Eco-Friendly Corrosion Protection: The Potential of Graphene

Graphene and Corrosion Protection

Since the genesis of steel structures, those with maintenance responsibilities for them have needed to tackle the issue of corrosion. The World Corrosion Organization states that corrosion produces $2.5tr in damage to steel structures each year – around 3-4% of the yearly GDP of industrialized countries. To mitigate the damage and related costs, many alternatives exist, such as galvanization with zinc, chromium and other metals. Many of these metals are subject to intense pressure because of their REACH classification.

For very corrosive atmospheres, characterized in ISO 12944-2018 as CX environment, the most employed corrosion protection primers remain established on zinc-rich epoxy formulations (zinc content of above 80%), in various instances adapted with either with very complex binder systems and/or additional corrosion safeguarding pigments. For less corrosive conditions, passive corrosion safeguarding pigments such as phosphates are usually adequate.

Zinc is classed as extremely toxic to fish and will be released as zinc oxide, which is also toxic to fish, in the last phase of the life cycle of a corrosion protection coating throughout a corrosive attack, which will cause environmental contamination close to the steel construction.

In 2012, the Chinese government released a mandate for decreasing zinc in corrosion protection primers to accomplish an increased level of environmental safeguarding when these systems are employed.

Concurrently, Kirkland (Kirkland, N.T., Schiller, T., Medhekar.N.; Birbilis, N (2012). Exploring graphene as a corrosion protection”. Corrosion Science 56 (March 2012), 1 – 4) proved that graphene could be an option as corrosion safeguarding agent.

In 2016, Ramezanzadeh (Ramezanzadeh B, Niroumandrad S, Ahmadi A, et al. Enhancement of barrier and corrosion protection performance of an epoxy coating through wet transfer of amino functionalized graphene oxide, Corrosion Science, 2016, 103: 283-304) showed that a lessening of the decline of epoxy resins was possible with the addition of  0.1 weight % of amino-functionalized graphene oxide. It is thought that graphene oxide may react with hydroxyl ions, and chlorine ions are prevented from absorbing into the coating.

The studies encouraged The Sixth Element to accept the challenge from the Chinese government in 2012 to create a corrosion protection primer with less zinc by combining zinc powders with graphene for improved performance.

Employing a specially-created kind of graphene, known as SE1132, and extremely big zinc powder particles (D50 greater than 10 µm), The Sixth Element showed that combining 25 weight % zinc powder and one weight % of this kind of graphene, all constructed on dry film, leads to enhanced corrosion safeguarding performance in a 2k-epoxy primer.

3000 hours was achieved in usual salt spray testing environments (50 +/- 5 g of sodium chloride per liter of water at 35°C +/- 2°C, 50 µm dry film thickness)( see figure 1b). This finding is now safeguarded by a patent awarded in China and the US (China patent No. CN201210108771.3, US Patent No. US9982142B2).

The Success of This Performance can be Explained by the Following Factors:

  • Graphene possesses an increased lateral size (in xy-direction, some µm each) with extremely low thickness in nano-meter scale (< 3 nm). This kind of particle creates a large pigment capacity concentration applying the density of 2200 kg/m³. For the calculation, the volume of every particle must be determined on the basis of the dimensions. Conventional formulas are unsuitable. The consequence of this elevated pigment volume concentration is that despite one weight % having a very large amount of particles present, substantially expanding the barrier properties of the coating technique (see Figure 1 a)
  • Because of its electrical conductivity, graphene additionally supports zinc in its cathodic safeguarding behavior by constructing a denser electrical network. This allows the corrosion current to bleed off faster. 

(a) Schematic of rGO dispersed in a coating layer, compared to spherical nanofillers or without coating; (b) Salt spray testing indicates the better anti-corrosive performance for SE1132-containing epoxy primer compared to conventional primer; (c) A rack in Nantong, China, applied with SE1132-enhanced anti-corrosive primer.

Figure 1. (a) Schematic of rGO dispersed in a coating layer, compared to spherical nanofillers or without coating; (b) Salt spray testing indicates the better anti-corrosive performance for SE1132-containing epoxy primer compared to conventional primer; (c) A rack in Nantong, China, applied with SE1132-enhanced anti-corrosive primer. Image Credit: The Sixth Element (Changzhou) Materials Technology Co.,Ltd.

Practical Examples

Apart from SE1132, The Sixth Element has shown that graphene types SE1133 and SE1233 can be employed as corrosion safeguard additives in primer systems. Consumers in China and in Europe have introduced primer formulations, including graphene, to the market successfully (shown in figure 2).  

Graphene powder products and graphene coatings products.

Figure 2. Graphene powder products and graphene coatings products. Image Credit: The Sixth Element (Changzhou) Materials Technology Co.,Ltd.

For the first time in the world, a graphene-based corrosion protection primer has been employed for coating the inner and outer wall of the steel construction of an off-shore wind energy plant in December 2014. Many paint inspections of the steel construction, conducted in 2015 and 2019, corroborated the remarkable performance of the coating system comprised of the corrosion protection primer.

The graphene anti-corrosion coating system used in the wind turbine in 2014 to 2019.

Figure 3. The graphene anti-corrosion coating system used in the wind turbine in 2014 to 2019. Image Credit: The Sixth Element (Changzhou) Materials Technology Co.,Ltd.

Particularly in China, additional objects have employed graphene-based primers as a coating, illustrated in Figures 4 and 5.

Graphene-based primer used in coastal radar base.

Figure 4. Graphene-based primer used in coastal radar base. Image Credit: The Sixth Element (Changzhou) Materials Technology Co.,Ltd.

Graphene-based primers used in railway ancohrage.

Figure 5. Graphene-based primers used in railway ancohrage. Image Credit: The Sixth Element (Changzhou) Materials Technology Co.,Ltd.

In addition to this, The Sixth Element moved to significantly smaller zinc particles (D50 between 3 µm and 7 µm). In this case, it was enough to merge 0.6 – 0.8 weight-% of SE1132 with 25 weight-% to 28 weight % of zinc powder (all based on dry film) to gain superb outcomes in corrosion safeguarding.

Research is ongoing to further explain the full potential of graphene as a corrosion safeguarding agent in extremely demanding environments. 

The Sixth Element (Changzhou) Materials Technology is at the forefront of manufacturing graphene and graphene products with a present manufacture amount of 400 t/a and an accessible facility of 1000 t/a since April 2020. The graphene types and graphene oxide from The Sixth Element are REACH registered. The Sixth Element possesses an ISO 9001-2015, an ISO 14001-2015 and an IATF 16949 certification.

This information has been sourced, reviewed and adapted from materials provided by The Sixth Element (Changzhou) Materials Technology Co.,Ltd.

For more information on this source, please visit The Sixth Element (Changzhou) Materials Technology Co.,Ltd.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    The Sixth Element (Changzhou) Materials Technology Co.,Ltd.. (2021, March 15). Eco-Friendly Corrosion Protection: The Potential of Graphene. AZoM. Retrieved on August 01, 2021 from https://www.azom.com/article.aspx?ArticleID=19887.

  • MLA

    The Sixth Element (Changzhou) Materials Technology Co.,Ltd.. "Eco-Friendly Corrosion Protection: The Potential of Graphene". AZoM. 01 August 2021. <https://www.azom.com/article.aspx?ArticleID=19887>.

  • Chicago

    The Sixth Element (Changzhou) Materials Technology Co.,Ltd.. "Eco-Friendly Corrosion Protection: The Potential of Graphene". AZoM. https://www.azom.com/article.aspx?ArticleID=19887. (accessed August 01, 2021).

  • Harvard

    The Sixth Element (Changzhou) Materials Technology Co.,Ltd.. 2021. Eco-Friendly Corrosion Protection: The Potential of Graphene. AZoM, viewed 01 August 2021, https://www.azom.com/article.aspx?ArticleID=19887.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this article?

Leave your feedback
Submit