Analysis of Copper and Copper Alloys

Copper and its associated alloys are among the most extensively used metals in the world and have been found in use in a wide variety of applications since ancient times. Alloying copper with elements such as zinc and tin produces materials such as brass and bronze, which are essential in the world around us.

Analysis of Copper Alloys for Construction Applications

Image Credit: Bruker AXS GmbH

Due to its excellent electrical and thermal conductivity and workability, pure copper is indispensable in electrical engineering applications and finds significant applications in the construction sector.

The Q4 POLO is the perfect tool for the accurate analysis of all common copper alloys. With the new innovative MultiVision optics, the Q4 POLO offers exceptional analytical performance, facilitating effective monitoring of the main chemical elements and the ability to identify other trace elements, providing reliable results on all relevant alloying elements.

Sampling and Sample Preparation

It is necessary to sample the molten metal in a manner that represents the entire furnace melt, before it is poured or drawn into a specific mold to create a chill-cast disk. The samples are prepared by milling to produce a flat and homogeneous surface.

All samples in this study were prepared in accordance with the sample preparation procedure using a milling machine.

Typical copper samples

Figure 1. Typical copper samples. Image Credit: Bruker AXS GmbH.

Certified Reference Material (CRM)

Certified Reference Material (CRM) refers to reference materials that are characterized by a metrologically valid procedure for one or more specific properties, together with a certificate that determines the value of the specific property, its associated uncertainty at a stated confidence level, and a declaration of metrological traceability.

CRMs are certified by an established certifying organization using validated certification procedures, as detailed in the most recent ISO Guide 35.

A CRM determines the highest level an analytical reference material can be raised to because it can be traced directly to SI units and because of the accredited confidence in the company or organization which produced the material.

By way of comparison, reference materials (RMs) are materials whose adequate property values are homogeneous and well-established enough to be used for calibration. RMs have been exposed to interlaboratory testing using a number of analytical methods.

Statistics

Population: The entire group from which conclusions must be drawn.

Sample: A particular group that data will be collected from.

Average (X): A number that determines the central or common value in a set of data, generally the mode, median, or (most commonly) the mean, which is determined by dividing the sum of the values in the set by their number.

Standard Deviation (σ): A measure of the dispersion or variation of a set of values.

Precision and Accuracy

Precision is determined by the International Organization for Standardization (ISO) as the closest proximity of agreement between independent test results acquired under stipulated conditions.

Precision is only contingent on the distribution of random errors and is not directly associated with the true value or the specified value, while accuracy can be thought of as the closeness of agreement between a test result and the accepted reference value.

Precision and accuracy

Figure 2. Precision and accuracy. Image Credit: Bruker AXS GmbH.

Q4 POLO – Certified Reference Material and Reference Materials

Results

The reproducibility of the Q4 POLO and the approach described is illustrated by a series of repetitive measurements of CRMs or RMs from different alloy groups and element concentrations.

Only chemical elements with certified reference values are displayed in the following tables. The number of chemical elements analyzed varies in accordance with the chosen method (analytical program).

Analysis of Copper Alloys for Construction Applications

Image Credit: Bruker AXS GmbH.

Table 1. CRM BAM-376 – Cu110 (pure & low alloyed copper). Source: Bruker AXS GmbH.

Element % Zn Pb Sn P Mn Fe Ni Si Mg Cr Al S As
MEAN 1) 0.0218 0.0239 0.0248 0.0206 0.0208 0.0236 0.0207 0.0278 0.0124 0.0399 0.0181 0.0134 0.0199
STD 2) 0.0005 0.0012 0.0004 0.0009 0.0008 0.0002 0.0017 0.0010 0.0005 0.0012 0.0005 0.0007 0.0005
1 0.0215 0.0239 0.0249 0.0213 0.0198 0.0238 0.0204 0.0271 0.0130 0.0394 0.0179 0.0126 0.0202
2 0.0223 0.0219 0.0246 0.0193 0.0210 0.0233 0.0200 0.029 0.0128 0.0412 0.0179 0.0136 0.0193
3 0.0213 0.0244 0.0248 0.0210 0.0216 0.0237 0.0189 0.0283 0.0122 0.0405 0.0185 0.0142 0.0201
4 0.0222 0.0253 0.0243 0.0202 0.0200 0.0238 0.0209 0.0279 0.0120 0.0380 0.0175 0.0128 0.0193
5 0.0215 0.0238 0.0255 0.0212 0.0215 0.0234 0.0234 0.0266 0.0121 0.0405 0.0186 0.0137 0.0205
Certified Values
Value 0.0217 0.0236 0.0247 0.0203 0.0206 0.0235 0.0209 - 0.0124 0.0400 0.0182 0.0133 0.0200
Error 3) 0.0003 0.0004 0.0003 0.0005 0.0003 0.0003 0.0006 - 0.0019 0.0060 0.0010 0.0019 0.0003

 

Element % Be Ag Co Bi Cd Sb Zr Ti Au Se Te B O
MEAN 1) 0.0039 0.0164 0.0200 0.0197 0.0185 0.0205 0.0045 <0.0006 <0.0015 0.0214 0.0215 0.0028 <0.0700
STD 2) 0.0001 0.0004 0.0021 0.0053 0.0004 0.0021 0.0005     0.0011 0.0029 0.0002  
1 0.0040 0.0160 0.0175 0.0198 0.0189 0.0231 0.0042 <0.0006 <0.0015 0.0199 0.0215 0.0028 <0.0700
2 0.0040 0.0171 0.0215 0.0198 0.0188 0.0182 0.0052 <0.0006 <0.0015 0.0219 0.0167 0.0030 <0.0700
3 0.0038 0.0164 0.0220 0.0202 0.0181 0.0200 0.0045 <0.0006 <0.0015 0.0222 0.0244 0.0028 <0.0700
4 0.0039 0.0163 0.0179 0.0188 0.0181 0.0190 0.0040 <0.0006 <0.0015 0.0206 0.0227 0.0025 <0.0700
5 0.0039 0.0162 0.0212 0.0199 0.0186 0.0223 0.0044 <0.0006 <0.0015 0.0223 0.0221 0.0029 <0.0700
Certified Values
Value 0.0041 0.0163 0.0208 0.0200 0.0186 0.0202 0.0042 0.0005 - 0.0210 0.0215 - -
Error 3) 0.0006 0.0003 0.0002 0.0005 0.0003 0.0005 0.0002 0.0002 - 0.0004 0,0007 - -

1) MEAN = arithmetic average
2) STD = absolute standard deviation (1 σ)
3) Error = short for the absolute uncertainly of the certified value at the specified confidence level 

Table 2. CRW IMN WN1 – Cu120 (Cu-Zn alloys, brass). Source: Bruker AXS GmbH. 

Element % Zn Pb Sn P Mn Fe Ni Si Cr Al
MEAN 1) 38.28 0.509 1.008 0.033 0.576 0.237 0.290 0.161 0.0009 0.331
STD 2) 0.138 0.0082 0.0075 0.0023 0.0062 0.0018 0.0072 0.0034 0.0001 0.0015
1 38.36 0.511 0.997 0.033 0.578 0.239 0.289 0.162 0.0008 0.330
2 38.23 0.517 1.013 0.030 0.570 0.235 0.285 0.167 0.0009 0.334
3 38.09 0.517 1.015 0.036 0.582 0.238 0.281 0.158 0.0008 0.330
4 38.26 0.499 1.003 0.033 0.582 0.238 0.298 0.159 0.0007 0.331
5 38.45 0.503 1.013 0.031 0.569 0.235 0.296 0.159 0.0010 0.331
Certified Values
Value 38.28 0.51 1.000 0.031 0.57 0.23 0.29 - - 0.33
Error 3)   0.0072 0.018 0.0007 0.0072 0.01 0.0072     0.0058

 

Element % S As Be Ag Co Bi Cd Sb Se B Cu
MEAN 1) <0.0008 0.036 0.0013 <0.0005 <0.0035 0.022 <0.0015 0.096 0.0038 0.0026 58.42
STD 2)   0.0009 0.00006     0.0005   0.0072 0.0004 0.0003 0.126
1 <0.0008 0.037 0.0013 <0.0005 <0.0035 0.022 <0.0015 0.090 0.0042 0.0025 58.36
2 <0.0008 0.037 0.0013 <0.0005 <0.0035 0.022 <0.0015 0.089 0.0037 0.0025 58.47
3 <0.0008 0.037 0.0013 <0.0005 <0.0035 0.022 <0.0015 0.107 0.0041 0.0021 58.58
4 <0.0008 0.035 0.0014 <0.0005 <0.0035 0.022 <0.0015 0.095 0.0032 0.0026 58.43
5 <0.0008 0.037 0.0014 0.0006 <0.0035 0.021 <0.0015 0.097 0.0039 0.0030 58.24
Certified Values
Value - 0.035 - - - 0.023 - 0.099 - - 58.44
Error 3)   0.001       0.001   0.0043     0.069

1) MEAN = arithmetic average
2) STD = absolute standard deviation (1 σ)
3) Error = short far the absolute uncertainty of the certified value at the specified confidence level 

Table 3. Production Sample: CuSn12, 2.1052 - Cu160 (Cu-Sn alloys, bronze). Source: Bruker AXS GmbH. 

Element % Zn Pb Sn P Mn Fe Ni Si
MEAN 1) 0.171 0.575 11.74 0.018 <0.0005 0.013 1.208 0.0059
STD 2) 0.0075 0.0095 0.092 0.0005   0.0004 0.0087 0.0001
1 0.173 0.574 11.76 0.018 <0.0005 0.014 1.202 0.0059
2 0.169 0.574 11.72 0.018 <0.0005 0.014 1.215 0.0061
3 0.175 0.567 11.78 0.018 <0.0005 0.013 1.213 0.0059
4 0.176 0.560 11.70 0.018 <0.0005 0.013 1.206 0.0061
5 0.176 0.566 11.64 0.017 <0.0005 0.013 1.195 0.0058
6 0.179 0.588 11.80 0.018 <0.0005 0.013 1.201 0.0058
7 0.177 0.576 11.60 0.018 <0.0005 0.013 1.213 0.0057
8 0.160 0.592 11.73 0.018 <0.0005 0.014 1.225 0.0060
9 0.162 0.573 11.93 0.018 <0.0005 0.013 1.210 0.0060
10 0.159 0.577 11.77 0.018 <0.0005 0.013 1.203 0.0059
Typical Chemical Composition of BS EN 1982-2008 CC483K - DIN CuSn12 – Sn Bronze - UNS C90800
Element % Zn Pb Sn P Mn Fe Ni Si
Min - - 11.20 - - - - -
Max 0.40 0.60 13.00 0.20 0.02 0.15 2.00 0.01

 

Element % Mg Al S As Ag Sb Cu
MEAN 1) <0.00010 <0.0006 0.011 <0.0040 0.048 0.098 86.11
STD 2)     0.0003   0.0004 0.0023 0.09
1 <0.00010 <0.0006 0.011 <0.0040 0.049 0.099 86.09
2 <0.00010 <0.0006 0.011 <0.0040 0.049 0.096 86.13
3 <0.00010 <0.0006 0.011 <0.0040 0.048 0.094 86.08
4 <0.00010 <0.0006 0.010 <0.0040 0.048 0.099 86.16
5 <0.00010 <0.0006 0.010 <0.0040 0.048 0.097 86.23
6 <0.00010 <0.0006 0.011 <0.0040 0.049 0.098 86.04
7 <0.00010 <0.0006 0.010 <0.0040 0.048 0.097 86.24
8 <0.00010 <0.0006 0.011 <0.0040 0.049 0.101 86.09
9 <0.00010 <0.0006 0.011 <0.0040 0.049 0.099 85.93
10 <0.00010 <0.0006 0.010 <0.0040 0.049 0.102 86.09
Typical Chemical Composition of BS EN 1982-2008 CC483K - DIN CuSn12 – Sn Bronze - UNS C90800
Element % Mg Al S As Ag Sb Cu
Min   - -     - 85.50
Max   0.01 0.05     0.15 88.50

1) MEAN = arithmetic average
2) STD = absolute standard deviation (1 σ)

Table 4. Production Sample: CuSn7Zn4Pb7, 2.1090, CC493K - Cu150 (Gunmetal alloys). Source: Bruker AXS GmbH.

Element % Zn Pb Sn P Mn Fe Ni Si Cr
MEAN 1) 4.075 5.854 6.884 0.030 <0.0004 0.069 1.083 0.0006 0.0007
STD 2) 0.019 0.063 0.023 0.0009   0.0005 0.0087 0.0001 0.00004
1 4.082 5.832 6.913 0.031 <0.0004 0.069 1.088 0.0006 0.0007
2 4.073 5.797 6.887 0.030 <0.0004 0.069 1.090 0.0006 0.0008
3 4.099 5.951 6.880 0.029 <0.0004 0.069 1.064 0.0006 0.0007
4 4.088 5.907 6.863 0.031 <0.0004 0.069 1.090 0.0006 0.0007
5 4.100 5.786 6.894 0.030 <0.0004 0.069 1.080 0.0007 0.0007
6 4.046 5.802 6.875 0.029 <0.0004 0.068 1.088 0.0007 0.0008
7 4.069 5.774 6.837 0.031 <0.0004 0.069 1.077 0.0006 0.0007
8 4.076 5.914 6.877 0.029 <0.0004 0.069 1.089 0.0007 0.0007
9 4.044 5.875 6.914 0.031 <0.0004 0.069 1.087 0.0006 0.0008
10 4.074 5.897 6.895 0.030 <0.0004 0.068 1.074 0.0007 0.0007
Typical Chemical Composition of Leaded Gunmetal - CuSn7Zn4Pb7 - BS EN 1982-2008 CC493K – RG7 – DIN 1705 2.1090
Element % Zn Pb Sn P Mn Fe Ni Si Cr
Min 2.30 5.20 6.20 -   - - -  
Max 5.00 8.00 8.00 0.03   0.20 2.00 0.01  

 

Element % AI S AS Ag Bi Sb Se Cu
MEAN 1) 0.0004 0.034 0.028 0.019 <0.0020 0.123 0.016 81.78
STD 2)   0.0009 0.0005 0.0002   0.0049 0.0004 0.075
1 <0.0004 0.034 0.027 0.019 <0.0020 0.113 0.015 81.78
2 <0.0004 0.034 0.028 0.019 <0.0020 0.129 0.016 81.83
3 <0.0004 0.035 0.028 0.019 <0.0020 0.124 0.016 81.68
4 <0.0004 0.034 0.027 0.019 <0.0020 0.119 0.016 81.73
5 <0.0004 0.033 0.028 0.019 <0.0020 0.126 0.016 81.82
6 <0.0004 0.036 0.028 0.019 <0.0020 0.122 0.016 81.87
7 <0.0004 0.034 0.027 0.019 <0.0020 0.118 0.015 81.93
8 <0.0004 0.033 0.028 0.019 <0.0020 0.127 0.016 81.72
9 <0.0004 0.033 0.029 0.019 <0.0020 0.125 0.016 81.76
10 <0.0004 0.033 0.028 0.019 <0.0020 0.125 0.016 81.74
Typical Chemical Composition of Leaded Gunmetal - CuSn7Zn4Pb7 - BS EN 1982-2008 CC493K – RG7 – DIN 1705 2.1090
Element % Al S As Ag Bi Sb Se Cu
Min - -       -   81.00
Max 0.01 0.08       0.30   84.50

1) MEAN = arithmetic average
2) STD = absolute standard deviation (1 σ)

ELEMENTAL.SUITE

ELEMENTAL.SUITE software offers users support on a day-to-day basis. Safe operation is facilitated by automated average and limit checks. With just one click, it is possible to save, print, and report all analyses.

Designed for optimal usability, the plug-in-based architecture of ELEMENTAL.SUITE offers maximum flexibility for all analytical requirements today and in the future.

Analysis of Copper Alloys for Construction Applications

Image Credit: Bruker AXS GmbH

Summary

The Q4 POLO is a Spark Optical Emission Spectrometer (OES) that combines high precision analysis capabilities in a compact unit with a competitive cost of ownership and small footprint. From day one, it is a ready-to-analyze solution that covers all relevant elements and wide concentration ranges.

Moreover, the Q4 POLO delivers high uptime while ensuring low maintenance and hassle-free operation. Reliable, high-precision analysis is now accessible on every foundry and production floor to obtain results easier and more cost-effectively than ever before.

Analysis of Copper Alloys for Construction Applications

Image Credit: Bruker AXS GmbH

This information has been sourced, reviewed and adapted from materials provided by Bruker AXS GmbH.

For more information on this source, please visit Bruker AXS GmbH.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Bruker AXS Inc.. (2023, January 03). Analysis of Copper and Copper Alloys. AZoM. Retrieved on March 30, 2023 from https://www.azom.com/article.aspx?ArticleID=22214.

  • MLA

    Bruker AXS Inc.. "Analysis of Copper and Copper Alloys". AZoM. 30 March 2023. <https://www.azom.com/article.aspx?ArticleID=22214>.

  • Chicago

    Bruker AXS Inc.. "Analysis of Copper and Copper Alloys". AZoM. https://www.azom.com/article.aspx?ArticleID=22214. (accessed March 30, 2023).

  • Harvard

    Bruker AXS Inc.. 2023. Analysis of Copper and Copper Alloys. AZoM, viewed 30 March 2023, https://www.azom.com/article.aspx?ArticleID=22214.

Ask A Question

Do you have a question you'd like to ask regarding this article?

Leave your feedback
Your comment type
Submit