Tight Tolerance Near Net Shape Production of Advanced Ceramics

Recent advances in ceramic injection molding (CIM) make it technically feasible and economical to produce medium to large volumes of complex, ultra-high precision ceramic components. Engineers can now combine the intricate geometry, which has long been the domain of plastic and metal parts, with the superior performance characteristics of ceramics.

Ceramic Injection Molding Enables Engineers to Utilize Beneficial Properties of Ceramics

The well-known benefits of ceramic material include: high hardness and mechanical strength; wear and corrosion resistance; dimensional stability over a wide range of temperatures; ability to withstand high working temperatures; good electrical insulation and excellent dielectric properties. However, until recent advances in CIM technology, production engineers and product designers did not view ceramics as a viable option for complex parts requiring tight dimensional tolerances.

Limitations of Earlier Technologies

Manufacturing small, intricate shapes in volume before the advent of CIM had significant limitations. The obvious challenge for ceramics is the inherent fragility of parts prior to sintering and the hardness of the material, which makes machining processes difficult and expensive post sintering.

Commonly used manufacturing processes, such as dry pressing or extrusion, are well-suited for high volume production, but they can produce only relatively simple shapes. For example, blind holes and undercuts are not possible. For more complex shapes, tight tolerances and improved surface finish, secondary machining is generally required.

New Design Features Allowed by Ceramic Injection Molding

Ceramic injection molding allows for features such as re-entrant angles, multi-shaped blind holes, screw threads, surface profiles, perpendicular holes, undercuts and intricate cavities. Unfortunately, until recently CIM did not provide the tight tolerances and high repeatability that is required for many applications. Achieving precise dimensional control has been difficult for CIM because the manufacturing process involves significant shrinkage of the component.

The Ceramic Injection Molding Process

Raw Materials

The CIM process begins with very fine ceramic powders. The powders are compounded with polymer binders to produce a pelletized feedstock. During molding, binders melt to form a liquid medium that carries the ceramic powders into the mold during the injection stage.

Molding

Using an injection molding machine similar to that used in conventional plastic molding, the feedstock is forced into a mold cavity forming a net shape part. Molds can be single-cavity or multi-cavity configurations.

Pyrolysis/Debinding and Sintering

After forming, the part goes through a two-stage process. First is pyrolysis or “debinding” to remove the binder, followed by sintering in a high temperature kiln to form a fully dense ceramic component. Sintering is the process of heating the material to a temperature below the melting point but high enough to allow fusion of individual particles and densification of the material.

During sintering, the component shrinks by as much as 20% while retaining the original geometric shape. With good process control, it is possible to achieve a uniform and repeatable shrinkage leading to tight tolerances, obviating any need for machining of the part afterwards

Advances in CIM

Controlled Shrinkage and Dimensional Control

Morgan Advanced Materials, a leading manufacturer of innovative ceramic, glass, metal and engineered coating solutions, has introduced several refinements to the CIM process to control shrinkage. These techniques achieve tolerances of ±0.3% of nominal (e.g., 1.000" = ±0.003") with excellent batch-to-batch repeatability and Cpk’s in excess of 1.66.

The high degree of dimensional control comes from process improvements implemented by Morgan Advanced Materials at all stages of production.

Mold Flow Simulation and Analysis

First, during the design phases, Morgan Advanced Materials conducts mold flow simulation and analysis in order to optimize the part and mold design. On the computer, adjustments are made to gate positions, wall thickness and cooling parameters to help achieve success. By performing this analysis early in the design process, prior to commissioning the injection mold, many problems can be addressed and improvements can be implemented quickly at low cost and without causing expensive delays in the production schedule.

Homogeneous Pelletized Feedstock

A second key factor in achieving tight tolerances and high repeatability is quality control during the mixing process to create a homogeneous pelletized feedstock. The ceramic particles must have a consistent size and they must be distributed evenly in the polymer binder. Morgan Advanced Materials engineers have implemented sophisticated processes to achieve uniform mixing and eliminate minute air pockets that could cause distortion or cracking in the final product. The use of sub-micron powders allows for smaller features that would otherwise not be possible with larger granulate-based forming methods such as dry pressing.

Cavity Pressure Containment and Control

The third critical refinement that Morgan Advanced Materials has implemented is cavity pressure containment and control. Cavity pressure is the process variable that correlates most directly with part quality. Morgan Advanced Materials uses pressure transducers inside the mold tool cavity to provide process control as the feedstock flows into the cavity. The transducers gives the system an “eye” inside the cavity, allowing Morgan Advanced Materials engineers to closely control part weight and dimensions, and eliminate flash, sinks, shorts and warp. In today’s world of Six Sigma, the standards are rising: “just fine” and “good enough” are not acceptable any more. Jobs with high volume and tight tolerances demand a level of capability that can only be achieved with cavity pressure containment and control.

Near Net Shape Fabrication

Engineers bring parts to Morgan Advanced Materials and are amazed that the ceramic injection molding process can now produce similar geometries to those available in plastic and metal. Morgan Advanced Materials’ tolerances are typically within 25 microns on anywhere from 10 to 200 different dimensions. This new process is attractive because it is repeatable. Customers receive highly consistent quality with little part-to- part variation that enables Cpk’s in excess of 1.66. With fewer rejects and proven statistical process control, incoming inspection by the customer is no longer required.

Increased Versatility in the Use of Ceramics

The advanced CIM process gives engineers more versatility in the use of ceramics when designing new products and replacing plastic and metal components that fail to perform adequately.

Summary

In fact, the wider use of CIM is part of an overall philosophic trend in component manufacturing. There is a discernible move away from the energy-inefficient and wasteful practice of machining off material, towards more efficient net-shape fabrication, which takes advantage of computer-driven technology. This trend, in turn, has allowed production engineers and product designers to improve productivity, lower manufacturing costs and improve product performance.

This information has been sourced, reviewed and adapted from materials provided by Morgan Advanced Materials.

For more information on this source please visit Morgan Advanced Materials.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Morgan Advanced Materials - Technical Ceramics. (2019, November 28). Tight Tolerance Near Net Shape Production of Advanced Ceramics. AZoM. Retrieved on December 10, 2019 from https://www.azom.com/article.aspx?ArticleID=3618.

  • MLA

    Morgan Advanced Materials - Technical Ceramics. "Tight Tolerance Near Net Shape Production of Advanced Ceramics". AZoM. 10 December 2019. <https://www.azom.com/article.aspx?ArticleID=3618>.

  • Chicago

    Morgan Advanced Materials - Technical Ceramics. "Tight Tolerance Near Net Shape Production of Advanced Ceramics". AZoM. https://www.azom.com/article.aspx?ArticleID=3618. (accessed December 10, 2019).

  • Harvard

    Morgan Advanced Materials - Technical Ceramics. 2019. Tight Tolerance Near Net Shape Production of Advanced Ceramics. AZoM, viewed 10 December 2019, https://www.azom.com/article.aspx?ArticleID=3618.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this article?

Leave your feedback
Submit