High Purity Alumina Laser Wave Guides for CO2 Lasers

CO2 lasers are used in commercial and military applications and produce laser light in the infra-red region of the spectrum at around the 1000nm (10µm) wavelength. Some designs include incorporation of a ceramic 'bore', which acts as the optical wave-guide for the laser radiation and confines the electrical discharge. The ceramic therefore requires a very straight and accurate central hole with the outside having electrical contacts and the ends being designed to join to mirrors etc. The bores may be round or square and the device may be straight, Z-folded (i.e. several straight lengths).

Alumina Laser Wave Guides

Morgan Advanced Materials (MAC) Aluminas are particularly suitable for producing laser wave-guides since they provide the required combination of dielectric properties, thermal conductivity and optical reflectivity. Straight bores can be manufactured using ultrasonic drilling up to 250mm in length. Alumina grades are available that are particularly suitable for these parts and where additional metallising and brazing are required to form the complete assembly. Alternatively the development of square bores has been achieved using glazing or thermo-diffusion bonding techniques. Morgan Advanced Materials has all the facilities to manufacture these parts up to 1 metre in length including grinding, polishing, thermo-diffusion bonding and subsequent molybdenum-manganese metallising.

Thermo-Diffusion Bonded Assemblies for FIR CO2 Lasers

Morgan Advanced Materials’ ability to produce thermo-diffusion bonded assemblies offers excellent flexibility for the manufacturer of FIR CO2 lasers. The basic technique allows for two pieces of alumina to be cohesively bonded together such that there is no apparent joint and for all intents and purposes the resulting component is monolithic in nature. Using this technique, waveguides comprising complex assemblies of high precision component parts can be manufactured to form a homogenous alumina structure with bore widths and surface finishes maintained to very tight tolerances. The joint is completely homogenous, stress free, non-porous and visible except by high power microscopy.

Properties and Applications of Thermo-Diffusion Bonded Laser Assemblies

The resultant device is rugged and gas tight with the integrity of the gas seals proven over periods of time in excess of 5 years and is capable of being further processed at high temperatures e.g. during brazing. The ability to develop high output powers from miniaturised devices makes this technology extremely useful in the further development of these lasers for use in robotic, medical or defence applications.

This information has been sourced, reviewed and adapted from materials provided by Morgan Advanced Materials.

For more information on this source please visit Morgan Advanced Materials.


Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Morgan Advanced Materials - Technical Ceramics. (2019, November 28). High Purity Alumina Laser Wave Guides for CO2 Lasers. AZoM. Retrieved on July 06, 2022 from https://www.azom.com/article.aspx?ArticleID=3652.

  • MLA

    Morgan Advanced Materials - Technical Ceramics. "High Purity Alumina Laser Wave Guides for CO2 Lasers". AZoM. 06 July 2022. <https://www.azom.com/article.aspx?ArticleID=3652>.

  • Chicago

    Morgan Advanced Materials - Technical Ceramics. "High Purity Alumina Laser Wave Guides for CO2 Lasers". AZoM. https://www.azom.com/article.aspx?ArticleID=3652. (accessed July 06, 2022).

  • Harvard

    Morgan Advanced Materials - Technical Ceramics. 2019. High Purity Alumina Laser Wave Guides for CO2 Lasers. AZoM, viewed 06 July 2022, https://www.azom.com/article.aspx?ArticleID=3652.

Ask A Question

Do you have a question you'd like to ask regarding this article?

Leave your feedback
Your comment type