Zetasizer Nano ZSP – Premium Particle Characterization System

Malvern Panalytical has designed a premium particle characterization system called Zetasizer Nano ZSP. This high-performance system is perfect for the characterization of nanoparticles and proteins where optimum sensitivity for zeta potential and size measurement is needed.

The Zetasizer Nano ZSP includes a two angle particle and molecular size analyzer for improved measurement of low or high concentration samples; small or dilute samples; and for detection of aggregates using dynamic light scattering with non-Invasive Back Scatter (NIBS) optics. The system also includes a molecular weight analyzer using static light scattering and a zeta potential analyzer that utilizes electrophoretic light scattering for molecules, particles, and surfaces.

In addition, the Zetasizer Nano ZSP has a protein measurement option for protein mobility measurements.

Key Features

The main features of the Zetasizer Nano ZSP are:

  • Size measurement from 0.3 nm (diameter) to 10 µm using patented NIBS technology
  • Excellent sensitivity for the zeta potential measurement of nanoparticles and proteins using patented M3-PALS technology
  • Molecular weight measurement down to 980 Da
  • Excellent protein size measurement sensitivity, 0.1 mg/mL (Lysozyme)
  • Sample concentrations from 0.1 ppm to 40% w/v
  • Zeta potential of surfaces using accessory cell
  • Microrheology option to determine viscosity and viscoelasticity
  • Integrated protein calculators
  • Autotitrator option allows automation of measurements
  • Research software option provides access to more features and analysis algorithms for the light scattering specialist
  • 21CFR part 11 software option to allow compliance with ER/ES
  • Optical filter option to enhance measurements with fluorescent samples
  • Chromatography detector capability to enable use as a size detector with GPC/SEC or FFF

Customer Testimonial

The Zetasizer Nano ZSP will be used for the evaluation of nano particle size, dispersion and surface chemistry.  Size and zeta potential will be measured when particles are produced and the data will be used to confirm the effect of changes in the chemistry of particles. Our main objective is to find alternative materials for rare earths and to develop rare earth-free functional materials for use in applications such as high performance motors, white LED, battery and photocatalyst materials.

Dr Kikuo Okuyama, Department of Chemical Engineering, Hiroshima University

Other Equipment by this Supplier