Posted in | News | Semiconductor

Electric Vehicle Battery Management System (BMS) Drives a Third of Silicon Demand, IDTechEx’s Research Finds

IDTechEx‘s new report “Semiconductors for Autonomous and Electric Vehicles 2023-2033” finds that the coming mass adoption of electric vehicles will drive a 10-year CAGR of 20.9% in semiconductors used for electric powertrains. Along with the rise of more autonomous vehicles, this will drive the overall automotive semiconductor market to a CAGR of 9.4% over the next decade.

Silicon demand for battery management systems in electric vehicles. Source: IDTechEx

It is no secret that electric vehicles are the future, with growing pressure to decarbonize felt strongly in the automotive industry. This is reflected in recent electric vehicle sales figures, which, since around 2020, have seen exponential year-on-year growth indicating a transition from an earlier adopter technology to a mainstream one. As a result, IDTechEx predicts a 15% CAGR in the battery electric vehicle market over the next decade.

Semiconductor Components in Electric Vehicles

Semiconductor technologies have become engrained in internal combustion engine vehicles, with microcontrollers (MCUs) coordinating the mechanical, explosive ballet in a way that returns the most miles from each drop of fuel. However, managing the flow of electricity to and from the battery in an electric vehicle requires significantly more semiconductor administration in the form of power electronics. Silicon (Si) and silicon carbide (SiC) devices used for onboard chargers, inverters and dc-dc converters play a key role in the operation of electric vehicles and make up a significant proportion of the semiconductor value in the vehicle.

Big power electronics components like the inverter make up a considerable chunk of the value that goes into building an electric vehicle. But IDTechEx’s “Semiconductors for Autonomous and Electric Vehicles 2023-2033” report goes down to the level of individual chips and wafers. From this perspective, the battery management system (BMS) becomes a surprisingly large contributor to silicon demand in electric vehicles.

Within the battery management system, there are two main types of chips, one master controller making the big decision and lots of battery monitoring and balancing integrated circuits (BMB ICs), which look after groups of cells. These BMB ICs collect information from voltmeters, thermometers and other sensors in the pack and send that information to the main controller, which can act accordingly, like turning the cooler on if the battery is too warm. The issue is that these cells typically look after 10-20 cells each, and those familiar with electric cars will know that some can have thousands of cells: the result is lots of BMB ICs throughout the pack. IDTechEx’s research finds that, although power electronics are such a hefty set of components, the battery management system makes up approximately one-third of the silicon demand used to make electric powertrains.

Nothing ever stands still in the rapidly evolving world of semiconductor technologies and the BMS is not immune from semiconductor trends either. As stated above, BMB ICs are capable of monitoring between ten and 20 cells within the pack, but this number is growing. This is likely thanks to the gradual move to more advanced silicon processes giving more powerful and more capable chips. The effect of this is a reduction in chips required throughout the battery pack. This is compounded by trends towards fewer cells per vehicle, enabled by growing cell capacities.

Electrification, as well as automation, are epoch-defining transitions for the automotive industry and bring with them new and quickly developing semiconductor markets. Although this article is mainly concerned with the battery management system, “Semiconductors for Autonomous and Electric Vehicles 2023-2033” gives a holistic and comprehensive coverage of semiconductors throughout the car, including ADAS, autonomy, LiDAR, radar, cameras, 4G connectivity, 5G connectivity, electric powertrains, MCUs, SOCs and more. IDTechEx can help businesses understand all of the new technologies coming to vehicles, the technologies on the horizon, and how the evolving automotive industry is going to impact semiconductor markets.

Source: http://www.IDTechEx.com

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    IDTechEx. (2023, April 17). Electric Vehicle Battery Management System (BMS) Drives a Third of Silicon Demand, IDTechEx’s Research Finds. AZoM. Retrieved on April 27, 2024 from https://www.azom.com/news.aspx?newsID=61153.

  • MLA

    IDTechEx. "Electric Vehicle Battery Management System (BMS) Drives a Third of Silicon Demand, IDTechEx’s Research Finds". AZoM. 27 April 2024. <https://www.azom.com/news.aspx?newsID=61153>.

  • Chicago

    IDTechEx. "Electric Vehicle Battery Management System (BMS) Drives a Third of Silicon Demand, IDTechEx’s Research Finds". AZoM. https://www.azom.com/news.aspx?newsID=61153. (accessed April 27, 2024).

  • Harvard

    IDTechEx. 2023. Electric Vehicle Battery Management System (BMS) Drives a Third of Silicon Demand, IDTechEx’s Research Finds. AZoM, viewed 27 April 2024, https://www.azom.com/news.aspx?newsID=61153.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.