Electronic Books

Featured Book Categories

Select from the links below to navigate through to books of that category or alternatively browse the Materials/Engineering Books A to Z page.

Materials/Engineering Books by Subject Matter

Electronic Books
This set, consisting of Surfaces, Interfaces, and Films for Microelectronics and Electronic Materials Science by Eugene Irene introduces the reader to the field of materials science, providing extensive coverage of surfaces, interfaces and film fundamentals for microelectronics, as well as the physics and chemistry of microelectronics processing.
This book contains 26 papers from the Magnetoelectric Multiferroic Thin Films and Multilayers; Dielectric Ceramic Materials and Electronic Devices; Recent Developments in High-Temperature Superconductivity; and Multifunctional Oxides symposia held during the 2010 Materials Science and Technology (MS&T'10) meeting, October 17-21, 2010, Houston, Texas.
The rapid development of polymer electronics has revealed the possibility for transforming the electronics market by offering lighter, flexible and more cost effective alternatives to conventional materials and products. With applications ranging from printed, flexible conductors and novel semiconductor components to intelligent labels and large area displays and solar panels, products that were previously unimaginable are now beginning to be commercialised.
The modelling and analysis of applications using piezoelectric, magnetostrictor and shape memory materials is done using the ATILA Finite Element Method (FEM) software. The entire design can be constructed, refined and optimized before the commencement of production.
This book is designed as an introduction for graduate students, engineers, and researchers who want to understand the current status and future trends of micro- and nano-electronic materials and devices. It also serves as an essential reference for nanotechnology "gurus" who need to keep abreast of the latest directions and challenges in microelectronic technology. The viewpoints presented within the book can help to foster further research and cross-disciplinary interactions required to surmount the barriers facing future generations of technology design.
Basic Electromagnetism and Materials is the product of many years of teaching basic and applied electromagnetism. This textbook can be used to teach electromagnetism to a wide range of undergraduate science majors in physics, electrical engineering, or materials science.
This book covers the bulk growth of semiconductors, i.e. silicon, gallium arsenide, cadmium mercury telluride, indium phosphide, indium antimonide, gallium nitride, cadmium zinc telluride, a range of wide-bandgap II-VI compounds, diamond and silicon carbide, and a wide range of oxides/fluorides (including sapphire and quartz) that are used in many industrial applications.
The Springer Handbook of Electronic and Photonic Materials has been prepared to give a broad coverage of a wide range of electronic and photonic materials, starting from fundamentals and building up to advanced topics and applications. Its wide coverage with clear illustrations and applications, its chapter sequencing and logical flow, make it very different than other electronic materials handbooks. Each chapter has been prepared either by experts in the field or instructors who have been teaching the subject at a university or in corporate laboratories.
A complete new edition on ferroelectrics, Landolt-Börnstein volume III/36, is required by the growing number of publications and increasing amount of valuable data after the publication of volume III/16 (1981) and its supplement III/28 (1990). As the range of the compiled data is very extensive, volume III/36 is divided into three subvolumes titled III/36A Oxides, III/36B Inorganic substances other than oxides, III/36C Organic crystals, liquid crystals and polymers. Subvolume III/36C on organic crystals, liquid crystals and polymers is presented herewith.
Semiconductor science and technology is the art of defect engineering. The theoretical modeling of defects has improved dramatically over the past decade. These tools are now applied to a wide range of materials issues: quantum dots, buckyballs, spintronics, interfaces, amorphous systems, and many others. This volume presents a coherent and detailed description of the field, and brings together leaders in theoretical research. Today's state-of-the-art, as well as tomorrow’s tools, are discussed: the supercell-pseudopotential method, the GW formalism,Quantum Monte Carlo, learn-on-the-fly molecular dynamics, finite-temperature treatments, etc. A wealth of applications are included, from point defects to wafer bonding or the propagation of dislocation.
Transparent electronics is emerging as one of the most promising technologies for the next generation of electronic products, away from the traditional silicon technology. It is essential for touch display panels, solar cells, LEDs and antistatic coatings.
This report seeks to provide an overall picture of the varied use of polymers in the manufacture of electronic components. It has endeavoured to identify trends and future movements of the market.
Applied Electromagnetism and Materials picks up where Basic Electromagnetism and Materials left off by presenting practical and relevant technological information about electromagnetic material properties and their applications. This book is aimed at senior undergraduate and graduate students as well as researchers in materials science and is the product of many years of teaching basic and applied electromagnetism.