Editorial Feature

What are Polyoxometalate Soft Matter Composites?

Constant technological advancement has driven an ever-increasing demand for new smart materials, particularly in energy sectors. For this reason, promising materials with superior electrochemical characteristics, such as Polyoxometalates composites, have long been valued by scientists due to their wide range of uses and enormous potential to fulfill the demands of modern industry.

Polyoxometalate Soft Matter Composites, What are Polyoxometalate Soft Matter Composites

Image Credit: Gorodenkoff/Shutterstock.com

Polyoxometalates-Soft Matter Composites: An Overview

Polyoxometalates (POMs) are a distinct type of anionic metal-oxygen cluster formed from transition metals with high valence. They are nanoscale-sized molecules with clearly defined molecular structures.

POMs offer unique advantages in various fields, such as biomimetics, molecular electronics, theranostics, energy conversion, and catalysis. However, they have drawbacks such as high crystalline energies (difficult to process), limited solubility in organic media, and poor recyclability in liquid media (low catalytic efficiency), severely restricting their applicability.

In addition, their molecular composition hinders technological implementation due to increased leaching, degradation, and low reactivity, especially when demanding applications like electrolysis, heat catalysis or extremely acidic/basic solutions are targeted. Therefore, POM research has increasingly focused on immobilizing POMs on diverse substrates.

While much early research focused on semiconductor and metal oxide supports, the latest research has shown that the integration of POM in soft matter matrices such as hydrogels, stimuli-responsive matrices, and polymers has led to significant advances in multifunctional composite design.

How are Polyoxometalates Embedded in Soft-Matter?

Two primary strategies for integrating polyoxometalates into soft matter matrices are covalent (Class-I hybrids) and non-covalent bonds (Class-II hybrids).

Integrating polyoxometalates in soft matter organic films is viable for various applications. This provides highly stable systems, and adding functional polymers improves the polyoxometalates' characteristics.

Advantages

Polyoxometalate soft matter composites’ distinctive qualities, such as oxygen-rich surfaces, strong acidity, chemical adaptability, electron-accepting capacity, and their wide range of sizes, nuclearities, and structures, make them potential building blocks for manufacturing functional materials.

They are highly stable during electrochemical application because of their quick reversible multielectron redox transitions and adjustable redox characteristics. This makes them an attractive material for developing proton exchange membranes for fuel cell systems.

Limitations

Integrating polyoxometalates into soft matter polymeric building blocks has been a common strategy for producing hybrid materials for a long time. While this technique easily offers access to hybrid materials, there are certain downsides, such as cargo leakage due to anion exchange, polymer composition limitations due to protonation sites, and poor stability in some situations.

Industrial Applications of Polyoxometalates Soft Matter Composites

Biomedical Applications

The persistent growth of bacterial multidrug resistance emphasizes the need to discover new antibacterial substances.

Polyoxometalates soft matter composites have promising antibacterial properties and are thus being explored as potential future medications for treating bacterial infections.

Polyoxometalates have been used in various biological applications, including antiviral, antibacterial, and anticancer treatments. However, for in vivo treatment, reducing their toxicity, enhancing their selectivity, and modifying their mechanism of action are essential. Therefore, polyoxometalates soft matter composites are ideal for achieving these objectives.

Stimuli-Responsive Materials and Sensing Applications

Polyoxometalates are highly sensitive to pH, temperature, electricity, and light changes. By incorporating conductive soft organic polymers into thin sheets, polyoxometalates may also be used in sensors, theranostics, catalysis, and redox.

This enables substrates to directly access redox-active polyoxometalates via the conductive polymers.

Molecular Electronics

In electronics, polyoxometalate soft matter composites have received minimal attention, with most investigations concentrating on the deposition of polyoxometalates on semiconductor or metal surfaces.

Polyoxometalate Soft Matter Composites, What are Polyoxometalate Soft Matter Composites

Image Credit: Quality Stock Arts/Shutterstock.com

Soft-matter polymers' flexibility, scalability, and processability, combined with polyoxometalates' adjustable redox and spin states, have demonstrated significant promise for developing nano-scale devices and modules for molecular electronics.

Engineering durable and useful soft polymers that contribute to the device's performance, and understanding how to manage the polyoxometalate distribution within such hybrid materials, is crucial for the future development of molecular electronics.

Catalysis and Energy Storage

Catalysis is the most popular application of polyoxometalates. It uses these molecules' capacity to quickly receive electrons and create electrochemically reduced clusters. Due to their unique energy storage and conversion properties, polyoxometalate soft matter composites are used in fuel cells, supercapacitors, batteries, and electro-catalysis.

Summary and Future Outlooks

Polyoxometalates soft matter composites are flexible materials that integrate inorganic and organic chemistry. They have created new opportunities to use the synergies in these domains to create applications in molecular electronics, energy storage, and biomedicine. However, their molecular to macroscopic characterization remains challenging.

Experimental and theoretical efforts are being combined to better understand the properties of a single polyoxometalate site within a particular soft matter matrix, which is essential to gaining insight into the complicated behavior of these materials.

More from AZoM: How are Bacteria Used in Materials Development?

References and Further Reading

Kruse, J. H., Langer, M., Romanenko, I., Trentin, I., Hernández‐Castillo, D., González, L., ... & Streb, C. (2022). Polyoxometalate‐Soft Matter Composite Materials: Design Strategies, Applications, and Future Directions. Advanced Functional Materials, 2208428. https://doi.org/10.1002/adfm.202208428

Gao, Y., Choudhari, M., Such, G. K., & Ritchie, C. (2021). Polyoxometalates as chemically and structurally versatile components in self-assembled materials. Chemical science, 13(9), 2510–2527. https://doi.org/10.1039/d1sc05879g

Roy, S. (2014). Soft-oxometalates beyond crystalline polyoxometalates: formation, structure and properties. CrystEngComm, 16(22), 4667-4676. https://doi.org/10.1039/C4CE00115J

Wang, D., Liu, L., Jiang, J., Chen, L., & Zhao, J. (2020). Polyoxometalate-based composite materials in electrochemistry: state-of-the-art progress and future outlook. Nanoscale, 12(10), 5705-5718. https://doi.org/10.1039/C9NR10573E

Zhai, L., & Li, H. (2019). Polyoxometalate-Polymer Hybrid Materials as Proton Exchange Membranes for Fuel Cell Applications. Molecules (Basel, Switzerland), 24(19), 3425. https://doi.org/10.3390/molecules24193425

Zhang, B., Yin, P., Haso, F., Hu, L., & Liu, T. (2014). Soft matter approaches for enhancing the catalytic capabilities of polyoxometalate clusters. Journal of Cluster Science, 25(3), 695-710. https://doi.org/10.1007/s10876-013-0643-7

Disclaimer: The views expressed here are those of the author expressed in their private capacity and do not necessarily represent the views of AZoM.com Limited T/A AZoNetwork the owner and operator of this website. This disclaimer forms part of the Terms and conditions of use of this website.

Owais Ali

Written by

Owais Ali

NEBOSH certified Mechanical Engineer with 3 years of experience as a technical writer and editor. Owais is interested in occupational health and safety, computer hardware, industrial and mobile robotics. During his academic career, Owais worked on several research projects regarding mobile robots, notably the Autonomous Fire Fighting Mobile Robot. The designed mobile robot could navigate, detect and extinguish fire autonomously. Arduino Uno was used as the microcontroller to control the flame sensors' input and output of the flame extinguisher. Apart from his professional life, Owais is an avid book reader and a huge computer technology enthusiast and likes to keep himself updated regarding developments in the computer industry.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Ali, Owais. (2022, November 22). What are Polyoxometalate Soft Matter Composites?. AZoM. Retrieved on April 26, 2024 from https://www.azom.com/article.aspx?ArticleID=22226.

  • MLA

    Ali, Owais. "What are Polyoxometalate Soft Matter Composites?". AZoM. 26 April 2024. <https://www.azom.com/article.aspx?ArticleID=22226>.

  • Chicago

    Ali, Owais. "What are Polyoxometalate Soft Matter Composites?". AZoM. https://www.azom.com/article.aspx?ArticleID=22226. (accessed April 26, 2024).

  • Harvard

    Ali, Owais. 2022. What are Polyoxometalate Soft Matter Composites?. AZoM, viewed 26 April 2024, https://www.azom.com/article.aspx?ArticleID=22226.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this article?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.