Posted in | Thermal Analysis

Thermoplastics – Characterization by Thermal Analysis


Thermal analysis is an excellent method for identifying and characterizing thermoplastics because their properties are strongly dependent on temperature.


Thermoplastics soften on heating and can be molded into thousands of different shapes using methods such as injection molding or extrusion. Providing decomposition does not occur, the cycle of heating, molding, and cooling can be repeated very many times. This behavior distinguishes thermoplastics from elastomers or thermosets, which have are molded by means of an irreversible chemical reaction.

Among the most widely used thermoplastics are polyethylene, (PE), polypropylene, (PP), and polyesters such as polyethylene terephthalate, (PET).

Techniques Covered in the Webinar

Different thermal analysis techniques that can be used to characterize thermoplastics. The most frequently used methods are DSC, TGA, TMA, and DMA.

The most important effects that can be analyzed by DSC are the glass transition, melting behavior, reaction enthalpies, and the influence of fillers.

For TGA, the main applications are content analysis, thermal stability and evaporation behavior.

TMA is normally used to study the expansion or shrinkage of materials.

DMA is the best method for characterizing viscoelastic behavior of materials.

Other Webinars from Mettler Toledo - Thermal Analysis

Tell Us What You Think

Do you have a review, update or anything you would like to add to this content?

Leave your feedback
Your comment type

Materials Webinars by Subject Matter

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.