Using Borate Fusion for ICP-OES to Determine Metals in Lime and Limestone

Limestone (CaCO3) is an inorganic mineral that occurs abundantly in nature. It is mined, crushed and processed to suit specific end-use applications. In general, two types of lime are produced: one with a high calcium and magnesium content called dolomitic lime (MgO•CaO) and the other with a high calcium content called high calcium (CaO).

Image Credits: Pobedimskiy

Using inductively coupled plasma coupled with optical emission spectrometry (ICP-OES) to determine metals in lime samples is not a complex process as such, but would involve multiple steps if acid digestion processes are being considered. A single approach that includes all raw, waste and finished products involved in the lime production process would present a viable option as it will help boost uptime and productivity.

This article elucidates the automated borate fusion method that can be applied to achieve complete dissolution of lime products such as calcium hydroxide, dolomite, limestone, and residues without the need for hazardous acids or costly sample dissolution for ICP-OES determination.

Experimental Framework

Sample Preparation

Borate fusions can be carried out either manually or with automated systems. While both techniques are efficient, the automated systems provide a better option as they improve safety, boost productivity, and maintain repeatable preparation conditions.

These factors help prevent spattering and cross-contamination. In this study, fusions were carried out by means of the Claisse® M4™ Fluxer (Figure 1). This 3 burner fusion instrument enables safe, fast, and complete dissolution of the relevant samples.

Claisse® M4™ Fluxer

Figure 1. Claisse® M4™ Fluxer

The instrument also provides inter-burner flame stability for optimum consistency and repeatability. The software enables complete control across a wide range of operating parameters such as temperature, speed of agitation, and duration of each step, amongst others.

Using the adjustable parameters, users can easily optimize the fusion process to achieve total dissolution of the samples as quickly as possible. Different reference materials and samples were employed to verify the developed method, as shown in Table 1.

Table 1. List of reference materials and samples used to validate the developed method

Sample Supplier
Certified Reference Material – Dolomite ( SRM 88b ) NIST
Certified Reference Material - Limestone ( ECRM701-1 ) Techlab
Limestone sample ( #505 ) Lime industry
Dolomite sample ( # 506 ) Lime industry
CaOH sample ( # 507 ) Lime industry
CaO sample ( #508 ) Lime industry
Lime Kiln Dust ( Residues – LKD ) ( # 509 ) Lime industry

Using a platinum-gold (95%/5%) flat-bottomed Claisse® crucible, 0.35g of finely-ground sample measuring less than 100µm was mounted in a muffle furnace and ashed at 1100oC temperature for a period of 2h. It was then combined with and 2.0g of 66,67% lithium tetraborate/32,83% lithium metaborate/0,5 % lithium bromide flux (67/33/LiBr) and 0.2g of Ammonium Nitrate (NH4NO3).

Following this, the Claisse® crucible containing the mixture was placed on the Claisse® M4™ fusion instrument, fused for a period of 6 minutes, and then finally poured into a Teflon® Beaker, which included approximately 90mL of HNO3/HCl (10 %v/v) solution.

This solution was magnetically agitated for 5 minutes. Next, the content in the Teflon®beakers was diluted and an aliquot was transferred to a 100mL flask, bringing up to volume by means of the acid solution. The solution was finally brought to the ICP-OES for analysis.


The PerkinElmer® Optima™ 7300 DV ICP-OES instrument (Figure 2) was used to perform all the measurements. It is equipped with the WinLab32™ for ICP Version 4.0 software. The ICP torch is mounted in a horizontal direction in the shielded torch box of this instrument, but this can be observed either radially or axially.

PerkinElmer® Optima™ 7300 DV ICP-OES

Figure 2. PerkinElmer® Optima™ 7300 DV ICP-OES

Also, as an introduction system, a Scott Spray Chamber with Gem Tip Cross Flow Nebulizer(Figure 3) was used as it is capable of handling high dissolved solids and has excellent reliability and robustness.

A shear gas flow prevents the cool plasma tail and helps in observing the normal analytical zone of the plasma. This minimizes the effects of chemical matrix when the axial-view mode is utilized.

Scott Spray Chamber with Gem Tip Cross Flow Nebulizer

Figure 3. Scott Spray Chamber with Gem Tip Cross Flow Nebulizer

When integrated with an Echelle optical system and a SCD detector, the Optima™ 7300 DV ICP-OES system is capable of measuring all the wavelengths concurrently. Thanks to its flexibility, end users can easily include new wavelengths or elements as and when their programs change.

In addition, a 40MHz free-running solid state RF generator in the Optima™ has been specifically designed to operate from 750 to 1500W in 1W increments. A strong plasma is needed for precise analysis of borate fusion samples (Table 2) and for this purpose a high RF power is required. Table 2 shows the detailed operating parameters for the Optima™ 7300 DV system.

Table 2. Optima™ 7300 DV operating parameters

Nebulizer Gem Tip Cross flow
Spray Chamber Scott
Injector Alumina
RF 1500 W
Argon Flow rate Plasma : 16,0 L/min Nebulizer : 0,8 L/min Auxiliary : 0,4 L/min
Shear gas 100 psi
Sample flow rate 1,0 mL/min

Results and Discussion

The following factors were considered when choosing the wavelength:

  • The freedom from spectral interferences
  • The different sensitivities and anticipated concentration in the samples

In order to remain in the linear range and to prevent spectral interferences, the most sensitive line was not always utilized. Observed interferences were off-set by changing the processing parameters.

Method detection limits (MDLs) were based on 10 replicate measurements of a sequence of diluted sample solutions. The MDL was determined by multiplying the standard deviation of the 10 replicate measurements by 3 and the correction factor as follows:

    MDL = 3 x S10 x CDF

Where S10 is the standard deviation of the 10 replicates, and CDF is the Corrected Dilution Factor.

Table 3. Analytes of interest with selected wavelengths, method detection limits (MDLs) and viewing modes

Element Wavelength Viewing mode MDL ( mg/Kg )
Al 396,153 Axial 3
Ca 227,546 Radial 125
Fe 238,204 Axial 3
Mg 279,077 Axial 25
Mn 259,372 Axial 1
Si 288,158 Axial 6
Ti 368,519 Axial 1

Table 3 shows the relevant analytes with selected wavelengths, viewing modes, and MDLs.The precision and accuracy of the method was then assessed. The precision was ascertained by preparing and quantifying 10 replicates of various certified reference materials (CRMs), while the accuracy was ascertained by measuring the elemental recovery of CRMs.

Tables 4 and 5 show the results obtained for each CRM. The precision and accuracy thus achieved show that the developed method performed extremely well.

Table 4. Accuracy and precision measurements on Techlab ECRM 701-1 (Limestone)

Element Wavelength Average Experimental values( % ) n = 10 Certified values( % ) Accuracy( % ) Precision( % )
Al 396,153 0,29 0,29 99 3
Ca 227,546 38,2 37,7 102 4
Fe 238,204 0,69 0,73 95 3
Mg 279,077 0,37 0,36 102 3
Mn 259,372 0,02 0,02 98 3
Si 288,158 0,95 0,93 102 3
Ti 368,519 0,02 0,02 103 3

Corrected dilution factor = 571

Table 5. Accuracy and precision measurements on NIST SRM 88b (Dolomite)

Element Wavelength Average Experimental values( % ) n = 10 Certified values( % ) Accuracy( % ) Precision( % )
Al 396,153 0,18 0,18 104 1
Ca 227,546 21,1 21,4 98 1
Fe 238,204 0,19 0,19 99 1
Mg 279,077 12,8 12,7 101 1
Mn 259,372 0,01 0,01 115 1
Si 288,158 0,52 0,53 99 3
Ti 368,519 0,01 - - 1

Corrected dilution factor = 571

Pre-fusion spikes were carried out on CRMs and samples (Table 6) to check the accuracy of the elemental recoveries and also to verify the developed method.

Table 6. Recovery results on pre-fusion spikes (n = 5)

Element Wavelength #505 ( % ) #506 ( % ) #507 ( % ) #508 ( % ) #509 ( % ) ECRM 701-1 ( % ) SRM 88b ( % )
Al 396,153 114 103 104 112 95 103 101
Ca 227,546 102 92 103 88 95 95 91
Fe 238,204 100 76 90 85 92 67 91
Mg 279,077 104 91 88 90 89 87 91
Mn 259,372 95 98 91 91 93 96 97
Si 288,158 99 80 96 92 86 91 93
Ti 368,519 108 99 94 92 93 100 101

• Spike concentration = 50 to 100 % more than the concentrations in the samples and CRM solutions ( correction factor : 1143 ).
• If concentrations < MDL, addition of ±10 times the MDL value.


Borate fusions coupled with the Optima™ 7300 DV (simultaneous ICP-OES) have the preferred analytical capabilities to carry out the analysis of common lime products, such as dolomite and limestone, with excellent analysis speed, precision, accuracy, recovery, and robustness. They are able to meet the needs specified for analysis of fusion samples and other similar high matrix samples.

Metal components determined in various reference materials and samples show excellent accuracy. Therefore, the borate fusion method provides a suitable solution for complete dissolution of lime products. This automated method is fast, simple, and easy to use. In addition, it does not require highly skilled operators and eliminates the use of harsh acids.

This information has been sourced, reviewed and adapted from materials provided by Claisse.

For more information on this source, please visit Claisse.


Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Malvern Panalytical. (2023, May 30). Using Borate Fusion for ICP-OES to Determine Metals in Lime and Limestone. AZoM. Retrieved on February 29, 2024 from

  • MLA

    Malvern Panalytical. "Using Borate Fusion for ICP-OES to Determine Metals in Lime and Limestone". AZoM. 29 February 2024. <>.

  • Chicago

    Malvern Panalytical. "Using Borate Fusion for ICP-OES to Determine Metals in Lime and Limestone". AZoM. (accessed February 29, 2024).

  • Harvard

    Malvern Panalytical. 2023. Using Borate Fusion for ICP-OES to Determine Metals in Lime and Limestone. AZoM, viewed 29 February 2024,

Ask A Question

Do you have a question you'd like to ask regarding this article?

Leave your feedback
Your comment type
Azthena logo powered by Azthena AI

Your AI Assistant finding answers from trusted AZoM content

Your AI Powered Scientific Assistant

Hi, I'm Azthena, you can trust me to find commercial scientific answers from

A few things you need to know before we start. Please read and accept to continue.

  • Use of “Azthena” is subject to the terms and conditions of use as set out by OpenAI.
  • Content provided on any AZoNetwork sites are subject to the site Terms & Conditions and Privacy Policy.
  • Large Language Models can make mistakes. Consider checking important information.

Great. Ask your question.

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.