Scientists have used X-ray tomography to observe how the materials within solid-state lithium batteries evolve internally, as these batteries are charged and discharged simultaneously.
A team of researchers led by chemists at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory has identified new details of the reaction mechanism that takes place in batteries with lithium metal anodes. The findings, published today in Nature Nanotechnology, are a major step towards developing smaller, lighter, and less expensive batteries for electric vehicles.
Scientists at the University of Liverpool, as part of a consortium, have been awarded three Innovate UK grants to develop new anti-viral technology that will limit the transmission of SARS-CoV-2 (Covid-19) through touching contaminated surfaces in areas such as hospitals, train stations or restaurants and shops.
Mitsubishi Chemical Advanced Materials (MCAM), announces the expanded product line of its KyronMAX® structural thermoplastic materials with new resin formulations to meet the requirements of applications in the medical, oil & gas, aerospace, automotive, and recreation market segments.
Shining a Light on a New Photochemistry Reactor
Professor MATSUYAMA Hideto's research group at Kobe University's Research Center for Membrane and Film Technology has successfully developed a new desalination membrane. They achieved this by laminating a two-dimensional carbon material (*1) on to the surface of a porous polymer membrane (*2).
Metals such as gold or platinum are often used as catalysts. In the catalytic converters of vehicles, for example, platinum nanoparticles convert poisonous carbon monoxide into non-toxic CO2. Because platinum and other catalytically active metals are expensive and rare, the nanoparticles involved have been made smaller and smaller over time.
Skoltech researchers and their collaborators from France, the US, Switzerland, and Australia were able to create and describe a mixed oxide Na(Li1/3Mn2/3)O2 that holds promise as a cathode material for sodium-ion batteries, which can take one day complement or even replace lithium-ion batteries. The paper was published in the journal Nature Materials.
The liquid electrolytes in flow batteries provide a bridge to help carry electrons into electrodes, and that changes how chemical engineers think about efficiency.
Water splitting research for solar hydrogen production has focused on physical processes inside the semiconductor, such as light absorption, charge separation, and chemical processes on the surface that are highly complex and rely on the development of new materials. However, processes inside the solution had yet to be thoroughly explored.
Terms
While we only use edited and approved content for Azthena
answers, it may on occasions provide incorrect responses.
Please confirm any data provided with the related suppliers or
authors. We do not provide medical advice, if you search for
medical information you must always consult a medical
professional before acting on any information provided.
Your questions, but not your email details will be shared with
OpenAI and retained for 30 days in accordance with their
privacy principles.
Please do not ask questions that use sensitive or confidential
information.
Read the full Terms & Conditions.