MEMS to Move into the Body as Implantable Drug Devliery Devices

Over the last 10 years, researchers and clinicians have begun to use microelectromechanical systems (MEMS), which combine electronics technology with tiny mechanical devices like sensors and valves embedded in semiconductor chips--in the biomedical laboratory, to help automate diagnostic testing procedures. The next step, according to Shuvo Roy and other MEMS researchers, is moving MEMS into the body as the basis for implantable drug delivery devices, imaging systems, surgical tools, and more.

"MEMS technology promises to revolutionize medicine by enabling the development of miniature, smart, low-cost biomedical devices that can revolutionize biomedical investigation and clinical practice," says Roy, an associate professor of bioengineering at the University of California, San Francisco.

For example, Roy and his colleagues are now designing membranes that would allow dialysis to be miniaturized into implantable devices, freeing kidney failure patients from the cumbersome process, and have created wireless sensors for orthopedics that could monitor the need for spine surgery, bone healing, and implant performance.

Roy will discuss these developments and the future of bioMEMS technology in his talk, "MEMS for Implantable Medical Devices," at 4:40 p.m. on Tuesday, October 21, 2008, in Room 309 of the Hynes Convention Center.


Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback