Reducing Smudging and Reflections on Touch Screen Electronic Devices

Scientists have discovered the secret to easing one of the great frustrations of the millions who use smart phones, portable media players and other devices with touch- screens: Reducing their tendency to smudge and cutting glare from sunlight. In a report today at the 238th National Meeting of the American Chemical Society, they describe development of a test for performance of such smudge- and reflection-resistant coatings and its use to determine how to improve that performance.

Scientists have developed a test for evaluating and improving the performance of smudge- and glare-resistant screens used in smart phones, portable media players and other devices. Credit: The American Chemical Society

Steven R. Carlo, Ph.D., and colleagues note in the new study that consumer electronics companies value the appearance of their flagship devices just as much as their functionality. As a result, smudge, scratch and reflective resistant coatings have become standard on high-end touch-screen cell phones and MP3 players. These coatings are effective. However, their structure and mechanisms are poorly understood, so Carlo and colleagues developed a test to determine the chemical composition and effectiveness of smudge and reflective resistant materials. The test could also lead to a better understanding of the chemistry of these coatings and allow improved formulations and performance, Carlo says.

"Surfaces are particularly important in consumer products. This work investigates how products can be modified to reduce smudging and reflections. These modifications can offer improved resistance to fingerprints, anti-reflection properties or enhanced physical resistance," Carlo explains.

The basis of anti-smudge coatings is a compound called perfluoro alkyl ether, a derivative of Teflon with added ether groups to enhance its repellent effects. Anti-reflective materials use alternating layers of material, including silica and aluminum layers, to bend and diffuse light to reduce glare.

Since traditional chemical techniques could not be used on these super-thin coatings, Carlo and his team used depth profile X-ray photoelectron spectroscopy (XPS). That's a tool for comparing the chemistry of these coatings to predict their performance. The data allowed them to compare chain length, degree of branching and the hydrocarbon and fluoroether content of various samples. The fluoroether content has a key effect in enhancing efficacy. Anti-reflective coatings need alternating layers, which have differences in their refractive index (RI), a measure of how fast light travels through a material. Fluorocarbons in general have low RI and they offer anti-smudge properties. XPS allowed the scientists to visualize the multi-layer structure and the chemical species present in each layer. In general, the greater the number of layers there are in a coating, the greater the anti-reflective properties. Carlo and his team also discovered that more silica and aluminum layers led to better glare reduction.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Carl Zeiss Microscopy GmbH. (2019, February 10). Reducing Smudging and Reflections on Touch Screen Electronic Devices. AZoM. Retrieved on July 13, 2024 from https://www.azom.com/news.aspx?newsID=18615.

  • MLA

    Carl Zeiss Microscopy GmbH. "Reducing Smudging and Reflections on Touch Screen Electronic Devices". AZoM. 13 July 2024. <https://www.azom.com/news.aspx?newsID=18615>.

  • Chicago

    Carl Zeiss Microscopy GmbH. "Reducing Smudging and Reflections on Touch Screen Electronic Devices". AZoM. https://www.azom.com/news.aspx?newsID=18615. (accessed July 13, 2024).

  • Harvard

    Carl Zeiss Microscopy GmbH. 2019. Reducing Smudging and Reflections on Touch Screen Electronic Devices. AZoM, viewed 13 July 2024, https://www.azom.com/news.aspx?newsID=18615.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.