Scientists Of University Of Cambridge Devise Flexible Collective Osmotic Shock (COS) Method

Scientists of the University of Cambridge have published a novel research, demonstrating a novel flexible collective osmotic shock (COS) method for creating nanoporous materials, in the journal “Nature Materials”. The nanoporous substances can be used in wide range of applications from water purification devices to chemical sensors.

Dr Easan Sivaniah, a lead author from the university’s Cavendish Laboratory

The conventional nanoporous creation methods have its limitations, since it required that minor components be connected all along the structure and to the outside for its removal. The research illustrates how it is possible to use osmotic forces on structures having minor components that are completely covered in a matrix in order to make it nanoporous or porous.

Dr Easan Sivaniah, a lead author from the university’s Cavendish Laboratory, demonstrated that the research is identical to the classroom experiment, which uses a balloon filled with salty water. Sivaniah said that the experiment is about separating the salt from the balloon. Sivaniah explained that by keeping the balloon in a fresh water tub, the balloon swells as the fresh water enters it and on bursting, the entire salt is released into the tub. Sivaniah added that their research work demonstrates how this principle works in materials containing these trapped minor components causing a series of bursts that link together and to the exterior, letting out the trapped components and resulting in an open porous material. Sivaniah said that their team has presently found many applications using such nanoporous materials, including solar cells, light-emitting devices, and electrodes used in fuel cells as well as supercapacitors.

The scientists have shown how the created nanoporous materials can be used in the application of producing filters, which has the potential to filter very minute dyes from water.

The research explained the operation of light-emitting devices using titania electrodes produced by arranging nanoporous COS substances in stack-like form, which results in a highly-efficient photonic multilayers. These photonic multilayers can be used in sensors, which alter color in response to the absorbed chemical traces and can also be used with optical components.

Source: http://www.cam.ac.uk/

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    University of Cambridge. (2019, February 09). Scientists Of University Of Cambridge Devise Flexible Collective Osmotic Shock (COS) Method. AZoM. Retrieved on March 06, 2021 from https://www.azom.com/news.aspx?newsID=31293.

  • MLA

    University of Cambridge. "Scientists Of University Of Cambridge Devise Flexible Collective Osmotic Shock (COS) Method". AZoM. 06 March 2021. <https://www.azom.com/news.aspx?newsID=31293>.

  • Chicago

    University of Cambridge. "Scientists Of University Of Cambridge Devise Flexible Collective Osmotic Shock (COS) Method". AZoM. https://www.azom.com/news.aspx?newsID=31293. (accessed March 06, 2021).

  • Harvard

    University of Cambridge. 2019. Scientists Of University Of Cambridge Devise Flexible Collective Osmotic Shock (COS) Method. AZoM, viewed 06 March 2021, https://www.azom.com/news.aspx?newsID=31293.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Submit