Posted in | News | Energy | Photovoltaics

New Fabrication Process Improves Dye-Sensitized Solar Cell Efficiency

Dye-sensitized solar cell efficiency has been raised to a record 15% thanks to a new fabrication process developed by EPFL scientists.

© Alain Herzog/EPFL

Dye-sensitized solar cells (DSSCs) have many advantages over their silicon-based counterparts. They offer transparency, low cost, and high power conversion efficiencies under cloudy and artificial light conditions. However, until now their overall efficiency has been lower than silicon-based solar cells, mostly because of the inherent voltage loss during the regeneration of the sensitizing dye. In a Nature publication, EPFL scientists have developed a state solid version of the DSSC that is fabricated by a new two-step process raising their efficiency up to a record 15% without sacrificing stability.

The new solid-state embodiment of the DSSC uses a perovskite material as a light harvester and an organic hole transport material to replace the cell's electrolyte. Typical fabrication of this new DSSC involves depositing a perovskite material directly onto a metal-oxide film. The problem is that adding the entire material together often causes wide variation in the morphology and the efficiency of the resulting solar cell, which makes it difficult to use them in everyday applications.

Michael Grätzel's team at EPFL has now solved the problem with a two-step approach: First, one part of the perovskite is deposited in to the pores of the metal-oxide scaffold. Second, the deposited part is exposed to a solution that contains the other component of the perovskite. When the two parts come into contact, they react instantaneously and convert into the complete light-sensitive pigment, permitting much better control over the morphology of the solar cell.

The new method raises DSSC power-conversion efficiency up to a record 15%, exceeding the power conversion efficiencies of conventional, amorphous silicon-based solar cells. The authors believe that it will open a new era of DSSC development, featuring stability and efficiencies that equal or even surpass today's best thin-film photovoltaic devices.

Source: http://actu.epfl.ch

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.