Posted in | News | Materials Analysis

Researchers Design a Full Textile Capacitive Woven Sensor

In a paper recently published in the journal Advanced Material Technologies, researchers prepared a complete textile woven capacitive sensor to present the viability of interdigitated sensors integrated into fabrics. The sensor was further tested for moisture detection.

Study: A Full Textile Capacitive Woven Sensor. Image Credit: Jesus Sanz/Shutterstock.com

Background

Researchers have frequently been working to replace traditional electronic components with wearable electronics and smart textiles. Integrated textile sensors have benefits such as the capacity to detect physical or chemical stimulation without dramatically changing the fabric's structure, the ability to survey longer regions as compared to traditional sensors at a lower cost, and lesser requirements than electronic components.

Large-scale production of woven fabrics is believed to be more affordable than that of embroidery. Additionally, woven technology could result in fully integrated, non-touchable textile sensors. The incorporation of the textile sensor performs better when performed using the weaving technique, which also preserves the substrate's textile qualities.

About the Study

In the present study, the team used an interdigitated structure as the foundation of the suggested woven sensor. The Dornier LWV8/J weaving machine was used to weave the sensor. The warp yarns were guided up or down using a Jacquard system in accordance with the position necessary for the weave for the configuration of the structure of the finished fabric.

Two different conductive threads were employed to weave the sensor. Shieldex conductive yarns were used to replace 12 separate warp yarns during the manufacturing procedure of the sensors. Shieldex warp and Bekaert weft yarn sensors were categorized as USTS, while Bekaert weft and warp yarn sensors were classified as UBTB.

The team examined the designed woven textile sensor in the role of a presence sensor and comparative relative humidity characteristics. In order to characterize the humidity, the sensor was placed within a climatic chamber in order to study how it responded to a range of relative humidity between 30% and 90% while maintaining a constant temperature of 20 °C. It was placed over a chair to test the sensor's functionality as a presence sensor. The capacitance data were recaptured from a 70-kilogram individual sitting on a chair.

Observations

According to the sensor capacitance versus humidity responses for the UBTB and USTS, the capacitance for the two sensors increased as the relative humidity increased. With respect to relative humidity, the Bekaert yarns had good stability.

In terms of the average value, USTS showed the highest dispersion, ranging between 75% and 85%, with the values of standard deviation ranging between 4.3% and 5.5%. The standard deviation figures for UBTB, however, were more consistent. Not as many variances existed as noted for the USTS values. Meanwhile, the USTS's range of values was broader because of the conductivity of silver. Furthermore, USTS had a higher standard deviation than UBTB.

On average, embroidery had a 2.1% standard deviation, while the average standard deviation for woven sensors was 1.34%. Thus, it was determined that this method creates sensors that have less dispersion and higher repeatability. Between embroidery and weaving, the team also noted differences in sensitivity. For woven sensors, the sensitivity increased by 0.0168 log(C)(RH)-1.

After an individual sat on the sensor, USTS responded by significantly increasing the capacitance, which was kept at a higher level until the person got up. Furthermore, the sensor showed a modest rise in void condition after someone moved in and got up. When presence was detected, the UBTB sensor responded well. Subsequently, the sensor's results increased by 120–170%.

When a heavy object like a shopping bag, was placed on the sensor, the capacitance stayed steady in the range of 15% to 20% for all the varied load instances. This indicated that the bag's textile, which had variable permittivity, was the cause of the sensor variation. The sensor's ability to distinguish between a person and a bag was thus proven. When the space was occupied, both sensors were present and exhibited an increase in their capacitance. A person-occupied state was easily distinguished from object occupation and a void state.

Conclusions

To summarize, the researchers demonstrated a woven sensor and showed how effectively it could measure relative humidity and detect the presence of persons or objects. When compared to the embroidery technique, capacitive values exhibited a linear dependency with a smaller standard deviation which increased immediately with humidity.

The utility of presence detection was demonstrated by the test results, which provided clear values for void and occupied conditions and should allow easy applications. According to the authors, the cloth capacitive sensor can be used in more applications where the touch feel or other characteristics were previously a deterrent.

Source

Martínez-Estrada, M., Ventura, H., Gil, I., Fernández-García, R., A Full Textile Capacitive Woven Sensor, Adv. Mater. Technol. 2022, 2200284, DOI: https://doi.org/10.1002/admt.202200284

Disclaimer: The views expressed here are those of the author expressed in their private capacity and do not necessarily represent the views of AZoM.com Limited T/A AZoNetwork the owner and operator of this website. This disclaimer forms part of the Terms and conditions of use of this website.

Chinmay Chari

Written by

Chinmay Chari

Chinmay Chari is a technical writer based in Goa, India. His academic background is in Earth Sciences and he holds a Master's degree in Applied Geology from Goa University. His academic research involved the petrological studies of Mesoarchean komatiites in the Banasandra Greenstone belt in Karnataka, India. He has also had exposure to geological fieldwork in Dharwad, Vadodara, in India, as well as the coastal and western ghat regions of Goa, India. As part of an internship, he has been trained in geological mapping and assessment of the Cudnem mine, mapping of a virgin area for mineral exploration, as well understanding the beneficiation and shipping processes of iron ore.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Chari, Chinmay. (2022, October 10). Researchers Design a Full Textile Capacitive Woven Sensor. AZoM. Retrieved on May 05, 2024 from https://www.azom.com/news.aspx?newsID=60191.

  • MLA

    Chari, Chinmay. "Researchers Design a Full Textile Capacitive Woven Sensor". AZoM. 05 May 2024. <https://www.azom.com/news.aspx?newsID=60191>.

  • Chicago

    Chari, Chinmay. "Researchers Design a Full Textile Capacitive Woven Sensor". AZoM. https://www.azom.com/news.aspx?newsID=60191. (accessed May 05, 2024).

  • Harvard

    Chari, Chinmay. 2022. Researchers Design a Full Textile Capacitive Woven Sensor. AZoM, viewed 05 May 2024, https://www.azom.com/news.aspx?newsID=60191.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.