Posted in | News | Biomaterials

Barnacle-Inspired Surgical Glue can Halt Bleeding Within 30 Seconds

Mayo Clinic researchers and colleagues at Massachusetts Institute of Technology (MIT) have developed a rapid-sealing paste that can stop bleeding organs independent of clotting. The details are published in Nature Biomedical Engineering.

The inspiration for this paste- Barnacles.

Barnacles are those sea animals that adhere to rocks, the bottom of ships and large fish with the aim of staying in place despite wet conditions and variable surfaces. They're successful because they exude a type of oil matrix that cleans the surface and repels moisture. Then they follow up with a protein that cross-links them with the molecules of the surface. That two-step process is what happens when the sealing paste is applied to organs or tissues.

Historically, surgeons would use a type of material that would speed up coagulation and form a clot to stop the bleeding. In the fastest cases, that would still take several minutes. In preclinical studies, this research team has shown the paste to stop bleeding in as little as 15 seconds, even before clotting has begun.

"Our data show how the paste achieves rapid hemostasis in a coagulation-independent fashion. The resulting tissue seal can withstand even high arterial pressures," says Christoph Nabzdyk, M.D., a Mayo Clinic cardiac anesthesiologist and critical care physician. "We think the paste may be useful in stemming severe bleeding, including in internal organs, and in patients with clotting disorders or on blood thinners. This might become useful for the care of military and civilian trauma victims." Dr. Nabzdyk is co-senior lead author of the study.

The paste consists of an injectable material that consists of a water-repelling oil matrix and bioadhesive microparticles. It's the microparticles that link to each other and the surface of the tissue after the oil has provided a clean place to connect. The biomaterial slowly resorbs over a period of weeks.

The research was supported by MIT's Deshpande Center, National Institutes of Health, National Science Foundation, Army Research Office, The Zoll Foundation, and the Samsung Scholarship. The technology is protected by a shared patent between MIT and Mayo Clinic.

Co-authors are Hyunwoo Yuk, Ph.D.; Jingjing Wu, Ph.D.; Xinyu Mao, Ph.D.; Claudia Varela; Ellen Roche, Ph.D.; and Xuanhe Zhao, Ph.D., of MIT, and Tiffany Sarrafian Griffiths, D.V.M., Ph.D., and Leigh Griffiths, Ph.D., of Mayo Clinic.

Source: http://www.mayoclinic.org

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.