Advanced Temporary Bonding Solution for 3D TSV Semiconductor Packaging Unveiled at ECTC 2013

The semiconductor industry’s march toward broader 3D IC integration marked animportant milestone this week at the 2013Electronic Components & Technology Conference (ECTC), with the report of an advanced new temporary bonding solution for 3D Through-Silicone-Via (TSV) semiconductor packaging. The breakthrough was unveiled during ECTC’s 3D Materials and Processingsession, when Ranjith John, materials development & integration engineer at Dow Corning, presented a paper co-authored by Dow Corning, a global leader in silicones, silicon-based technology and innovation, and SÜSS MicroTec, a leading supplier of semiconductor processing equipment.

The paper, titled Low Cost, Room Temperature Debondable Spin on Temporary Bonding Solution: A Key Enabler for 2.5D/3D IC Packaging,details the development of a bi-layer spin-on temporary bonding solution that eliminates the need for specialized equipment for wafer pretreatment to enable bonding or wafer post-treatment for debonding. Thus, it greatly increases the throughput of the temporary bonding/debonding process to help lower the total cost of ownership.

“This advance underscores why Dow Corning values collaborative innovation. Combining our advanced silicone expertise with SÜSS MicroTec’s knowledgeable leadership in processing equipment, we were able to develop a temporary bonding solution that met all critical performance criteria for TSV fabrication processes. Importantly, the spin coat-bond-debond process we detailed in our co-authored paper takes less than 15 minutes, with room for further improvement,” said John. “Based on these results, we are confident that this technology contributes an important step toward high-volume manufacturing of 2.5D and 3D IC stacking.”

Both 2.5D and 3D IC integration offer significant potential for reducing the form factor of microelectronic devices targeting next-generation communication devices, while improving their electrical and thermal performance. Cost-effective temporary bonding solutions are a key enabler for this advanced technology by bondingtoday’s ultra-thin active device wafers to thicker carrier wafers for subsequent thinning and TSV formation. However, in order to be competitive, candidatetemporary bonding solutions must deliver a uniformly thick adhesive coat, and be able to withstand the mechanical, thermal and chemical processes of TSV fabrication. In addition, they must subsequently debond the active and carrier wafers without damaging the high-value fabricated devices.

Through their collaboration, Dow Corning and SÜSS MicroTec were able to develop a temporary bonding solution that met all of these application requirements. Comprising an adhesive and release layer, Dow Corning’s silicon-based material is optimized for simple processing with a bi-layer spin coating and bonding process. Combined with SÜSS MicroTec equipment, the total solution offers the benefits of simple bonding using standard manufacturing methods. In their co-published paper, the collaborators report a solution exhibiting a total thickness variation of less than 2 µm for spin-coated films on either 200- or 300-mm wafers. The bonding material exhibited strong chemical stability when exposed to phosphoric acid, nitric acid, organic solvents and other chemicals familiar to TSV fabrication. In addition, the bonding solution and paired wafers showed good thermal stability when exposed to the 300°C temperatures common to the TSV process.

Dow Corning builds on a long history of silicon-based innovation and collaboration in semiconductor packaging. From die encapsulants for stress relief, to adhesives for sealing and bonding, to thermal interface materials for performance and reliability, Dow Corning’s well-established global infrastructure ensures reliable supply, quality and support, no matter where you are in the world.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Dow Corning. (2019, February 09). Advanced Temporary Bonding Solution for 3D TSV Semiconductor Packaging Unveiled at ECTC 2013. AZoM. Retrieved on April 18, 2024 from https://www.azom.com/news.aspx?newsID=36951.

  • MLA

    Dow Corning. "Advanced Temporary Bonding Solution for 3D TSV Semiconductor Packaging Unveiled at ECTC 2013". AZoM. 18 April 2024. <https://www.azom.com/news.aspx?newsID=36951>.

  • Chicago

    Dow Corning. "Advanced Temporary Bonding Solution for 3D TSV Semiconductor Packaging Unveiled at ECTC 2013". AZoM. https://www.azom.com/news.aspx?newsID=36951. (accessed April 18, 2024).

  • Harvard

    Dow Corning. 2019. Advanced Temporary Bonding Solution for 3D TSV Semiconductor Packaging Unveiled at ECTC 2013. AZoM, viewed 18 April 2024, https://www.azom.com/news.aspx?newsID=36951.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.