In the chemical industry, the selective cleavage and oxidation of carbon–hydrogen (C–H) bonds, called "oxidative C–H functionalization" is an essential step in the production of many solvents, polymers, and surfactants, as well as intermediate compounds for agrochemicals and pharmaceuticals.
PFAS, a family of thousands of human-made chemicals, are everywhere, and some of them are known to be harmful for our bodies and the environment. Even more frightening is how little we know about these pervasive pollutants found in everything from food packaging and cleaning products to firefighting foams.
Hydrogen fuel cells-;which can efficiently power cars, generators, and even spacecraft with minimal greenhouse gas emissions-;are promising, renewable alternatives to combustion engines and other polluting forms of power.
Researchers from Skoltech, Lomonosov Moscow State University, and Sirius University of Science and Technology have proposed a new method for visualizing chemical reactions to help scientists understand the global chemical reaction space and come up with ways of synthesizing organic compounds used in the industry.
Researchers from Skoltech, Lomonosov Moscow State University, and Sirius University of Science and Technology have proposed a new method for visualizing chemical reactions to help scientists understand the global chemical reaction space and come up with ways of synthesizing organic compounds used in the industry.
Lithium-ion batteries have taken the world by storm thanks to their remarkable properties. However, the scarcity and high cost of lithium has led researchers to look for alternative types of rechargeable batteries made using more abundant materials, such as sodium. One particularly promising type of sodium-based battery is seawater batteries (SWBs), which use seawater as the cathode.
Electrolysis of water or "water electrosplitting" has received a great deal of attention recently owing to its potential as a clean source of hydrogen, the oft-touted fuel of the future.
Asynt reports how the Process Intensification Group, within the School of Engineering at Newcastle University, UK is using the MultiCell-PLUS High-Pressure Reactor as part of their program of ongoing research to create a new environmentally friendly generation of catalysts for production of biorenewable chemicals.
An article has been published in the journal ACS Energy Letters by researchers in China regarding the incorporation of solid Li storage technology with aqueous redox flow battery systems to advocate for the creation of an unconventional battery structure.
As a key precursor in the formation of new particles, sulfuric acid (H2SO4) plays an important role in the formation of aerosols and clouds in the atmosphere. Gas-phase sulfuric acid molecules can easily form molecular clusters at the beginning of nucleation through hydrogen bonding and other interactions.
Terms
While we only use edited and approved content for Azthena
answers, it may on occasions provide incorrect responses.
Please confirm any data provided with the related suppliers or
authors. We do not provide medical advice, if you search for
medical information you must always consult a medical
professional before acting on any information provided.
Your questions, but not your email details will be shared with
OpenAI and retained for 30 days in accordance with their
privacy principles.
Please do not ask questions that use sensitive or confidential
information.
Read the full Terms & Conditions.