Metabolix Biobased PHA Copolymers Improve PVC’s Performance Characteristics

Metabolix, an innovation-driven bioscience company focused on delivering sustainable solutions for plastics, chemicals and energy, today announced that new biobased PHA (polyhydroxyalkanoate) copolymers significantly improve the mechanical and environmental performance characteristics of polyvinyl chloride (PVC).

PVC is a polymer with a diverse use pattern ranging from construction materials to medical applications and an estimated global demand of approximately 35 million metric tons per year. Dr. Yelena Kann, Ph.D., senior polymer scientist at Metabolix, will present the findings in a presentation titled "New Biobased PHA Rubber Copolymers for PVC Modification" at the Society of Plastics Engineers' Vinyltec 2012 conference on Wednesday, October 24, 2012.

Metabolix developed a series of PHA copolymers and demonstrated that they were miscible with PVC resins. Based on miscibility and performance requirements, Metabolix researchers created specific compositions of PHA copolymers to improve plasticization, impact and processing modification of rigid and flexible PVC.

  • In plasticization, PHA copolymers performed as high molecular weight, readily dispersible plasticizers and enabled formulation of compounds with low additive migration, low extractables, volatile loss and staining.
  • In impact modification, PHA rubber copolymers outperformed the best available MBS core/shell impact modifiers and did not compromise PVC transparency or UV stability.
  • As a processing aid, the metal-adhering properties of PHA copolymers promoted homogeneous shear melting of PVC particles and prevented overheating and degradation.

Together, the results demonstrate that these newly developed biobased PHA copolymers can produce significant improvements in the modification and processing of PVC.

"The significant performance benefits PVC gained from blending with PHA copolymers underscores the versatility and value of Metabolix's PHA technology," said Oliver Peoples, chief scientific officer and vice president of research at Metabolix. "These developments will allow us to broaden the addressable market opportunity for our materials, beyond our traditional focus on those markets requiring biodegradation."

Metabolix worked closely with AlphaGary, a Massachusetts-based custom compounder of PVC and TPE/TPO materials, to validate PHA polymeric modifiers in PVC.

"We are pleased with what we have seen in these new polymeric PVC modifiers and are beginning to test them in current high-value applications. They combine effective impact modification with good transparency and are made from renewable feedstocks," said Mark Jozokos, global R&D manager at AlphaGary.

"The introduction of new PHA products for use as modifiers in PVC is a significant step in Metabolix's strategy for biopolymers that focuses on high-value applications," noted Bob Engle, vice president business and commercial development, biopolymers at Metabolix. "We plan to manufacture these new PHA products in the 10KTPA facility that Metabolix is establishing at Antibioticos in Leon, Spain. We expect samples of the polymeric modifiers will be available to ship to customers from this facility in early 2013."

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Yield10 Bioscience, Inc.. (2019, February 09). Metabolix Biobased PHA Copolymers Improve PVC’s Performance Characteristics. AZoM. Retrieved on October 12, 2024 from https://www.azom.com/news.aspx?newsID=34551.

  • MLA

    Yield10 Bioscience, Inc.. "Metabolix Biobased PHA Copolymers Improve PVC’s Performance Characteristics". AZoM. 12 October 2024. <https://www.azom.com/news.aspx?newsID=34551>.

  • Chicago

    Yield10 Bioscience, Inc.. "Metabolix Biobased PHA Copolymers Improve PVC’s Performance Characteristics". AZoM. https://www.azom.com/news.aspx?newsID=34551. (accessed October 12, 2024).

  • Harvard

    Yield10 Bioscience, Inc.. 2019. Metabolix Biobased PHA Copolymers Improve PVC’s Performance Characteristics. AZoM, viewed 12 October 2024, https://www.azom.com/news.aspx?newsID=34551.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.