Editorial Feature

What Are The Many Uses of Jute Fibers?

Jute, a natural fiber, is important in developing composite materials that have shown promise in domestic, automotive, and medical industries among others. 

jute fibers, what are the uses of jute fibers

Image Credit: Artyponds/Shutterstock.com

Jute plants thrive best in grassy soil with 125-150 mm of rainfall each month, mild to moderate temperatures (20-40°C), and high relative humidity (70-80%). Jute is a bast fiber that is grown in plantations and harvested as the plant develops. The plants are then frequently retted in slow running water to allow the fibers to be removed easily.

Why is the Treatment of Jute Fibers Necessary?

As per the latest research published in the journal Polymers, Jute, as a natural fiber, has various flaws including being readily decayed, combustible, thermally degradable, and having a high susceptibility to moisture, making it impractical for use in goods in its raw state. As a result, it requires further alteration for use in the manufacturing of sustainable products.

Use of Jute as a Construction Material

The application of jute fiber as the reinforcement material in polymeric matrix composites has led to a whole new world of possibilities for construction material applications.

Jute composite materials can be an exceptionally cost-effective resource for the construction industry, specifically for the manufacturing of compartment and unfounded ceiling panels, window and door frames, mobile or pre-fabricated buildings that can be used during natural disasters such as hurricanes, seismic activity, floods, and so on.

Household Applications of Jute Fibers

Jute is also utilized in home furnishings such as armchairs, decorative items, roofing, bags, tables, and bath units. Jute may be used as a wood replacement on the inside of a structure. Jute-FRP (fiber reinforced polymer) skin doors have the potential to be used in individual homes, workplaces, educational institutions, healthcare facilities, and research labs, among other places.

Water resistance, flame retardancy, chemical resistance, versatility, and other unique properties distinguish FRP-PUF sandwich composite gates from those built from typical monolithic materials. An expense and weight comparison of FRP gates to traditional wooden doors found that substituting typical wooden doors with FRP doors might yield cost and weight reductions of 40% and 60%, respectively, as per the research published in the journal GSC Advanced Research and Reviews.

Uses in the Automotive Industry

Natural fiber (jute) composites are extensively employed in a variety of automotive applications such as molded door panels, insulating layers, headliners, carpeting, door pads, and so on. Because of its diverse qualities such as lighter weight, strength-to-weight ratio, cheap cost, the convenience of structural construction, and high strength, form, weight, rigidity, resilience, and elasticity, hybrid jute composite materials are employed in a wide range of automotive applications.

Companies may want to use a jute fiber composite mat for items that need the qualities of wood but have a form that cannot be manufactured with regular wood material. These organic fiber composite applications are growing in favor of a more sustainable alternative to pricey synthetic fibers.

Applications in 3D Printing

Additive manufacturing has found uses in making objects with complicated forms without the requirement for assembly, albeit limited in terms of material selection and delivery performance. Jute fiber may be used to create a composite filament that can be used to print jute-based items.

Nanofiber/cellulose or reactivated carbon derived from jute fiber may be incorporated into 3D printer filaments for uses such as superstructures in aerospace, industrial packing, and diagnostic implants. Jute fiber coated with an antibiotic chemical can be enclosed in polymers to provide a long-lasting antibacterial effect. As a result, jute fiber-based 3D printed goods may open up entirely new research avenues.

Are Jute Fibers Applicable in the Aerospace Sector?

The aerospace industry is another key use for hybridized jute composites. Composite material is typically employed for up to 70% of an aircraft's construction. Green nanocomposites are particularly amazing and ideal materials in the aerospace industry because of their biocompatibility, greater strength and stiffness-to-density ratio, compact size, high dependability, endurance, cheap cost, and outstanding physical qualities.

Natural fiber sandwich composites are often made as thermoset composites, similar to how epoxy resin is used in the aerospace industry. Composites aid in lowering fuel consumption and improving airplane performance. Because airplane constructions are subjected to tremendous pressures, the composites used in them must have optimum creep resistance and strength.

Natural Jute Fiber in Marine Vehicles

Jute, as a single or hybrid fiber, has shown promise as a reinforcing material for ecologically viable and environment-friendly applications. Layered fiber-reinforced jute composites are now extensively utilized in the marine industry. Composite materials are widespread in the fabrication of luxury yachts and racing yachts, as well as high-speed sailing, maritime and rescue teams' patrol craft, fishery and work boats, and the offshore oil and gas industry. This is because composite materials provide several advantages over steel, aluminum, or wood.

Jute fiber reinforced composites are of special interest since they have excellent impact strength and modest compressive and flexural capabilities in contrast to other lignocellulosic fibers used in ship design.

Jute Fiber-Based Energy Autonomous Systems

Researchers have published an article in the journal Advanced Sustainable Systems focusing on a self-governed energy system based on jute fiber-based supercapacitors (SC) and sensors.

SCs made of jute fiber have a capacitance of 17 mF cm1 at 1 mV s1. According to the study, the SC's energy and power densities were 0.712 Wh cm-1 and 3.85 µW cm−1, respectively, at a capacitance of 8.65 mF cm1 and an applied current of 0.1 mA. According to the lengthy charging-discharging research (5000 cycles), the SC might function for up to 13 days with capacitive retention of 60%.

The charging-discharging performance demonstrates the full Jute-based system's possible applications in industries such as sensors, food quality, and pollution management.

Conclusion

Overall, jute fiber can replace ecologically destructive man-made fiber (e.g., glass fiber), and diverse advanced applications of jute fiber and its derivative nanomaterials in compostable bags, clothing, electronic goods, healthcare, and energy sectors are expected to grow rapidly.

More from AZoM: Jute Fiber Composites - Graphene Modifications

References and Further Reading

Shahinur, S. et. al. (2022). Current Development and Future Perspective on Natural Jute Fibers and Their Biocomposites. Polymers.14. 1445. Available at: https://doi.org/10.3390/polym14071445

Shah S. et. al. (2021). Present status and future prospects of jute in nanotechnology: A review. The Chemical Record. 21(7). 1631-1665. Available at: https://doi.org/10.1002/tcr.202100135

Ashraf, M.A. et. al. (2019). A. Jute Based Bio and Hybrid Composites and Their Applications. Fibers. 7. 77. Available at: https://doi.org/10.3390/fib7090077

Manjakkal, L et. al. (2021). Natural Jute Fibre‐Based Supercapacitors and Sensors for Eco‐Friendly Energy Autonomous Systems. Advanced Sustainable Systems. 5(3). 2000286. Available at: https://doi.org/10.1002/adsu.202000286

Farzana, M. et. al. (2022). Properties and application of jute fiber reinforced polymer-based composites. GSC Advanced Research and Reviews. 11(1), 084-094. Available at: https://doi.org/10.30574/gscarr.2022.11.1.0095

Disclaimer: The views expressed here are those of the author expressed in their private capacity and do not necessarily represent the views of AZoM.com Limited T/A AZoNetwork the owner and operator of this website. This disclaimer forms part of the Terms and conditions of use of this website.

Ibtisam Abbasi

Written by

Ibtisam Abbasi

Ibtisam graduated from the Institute of Space Technology, Islamabad with a B.S. in Aerospace Engineering. During his academic career, he has worked on several research projects and has successfully managed several co-curricular events such as the International World Space Week and the International Conference on Aerospace Engineering. Having won an English prose competition during his undergraduate degree, Ibtisam has always been keenly interested in research, writing, and editing. Soon after his graduation, he joined AzoNetwork as a freelancer to sharpen his skills. Ibtisam loves to travel, especially visiting the countryside. He has always been a sports fan and loves to watch tennis, soccer, and cricket. Born in Pakistan, Ibtisam one day hopes to travel all over the world.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Abbasi, Ibtisam. (2022, September 28). What Are The Many Uses of Jute Fibers?. AZoM. Retrieved on April 18, 2024 from https://www.azom.com/article.aspx?ArticleID=22090.

  • MLA

    Abbasi, Ibtisam. "What Are The Many Uses of Jute Fibers?". AZoM. 18 April 2024. <https://www.azom.com/article.aspx?ArticleID=22090>.

  • Chicago

    Abbasi, Ibtisam. "What Are The Many Uses of Jute Fibers?". AZoM. https://www.azom.com/article.aspx?ArticleID=22090. (accessed April 18, 2024).

  • Harvard

    Abbasi, Ibtisam. 2022. What Are The Many Uses of Jute Fibers?. AZoM, viewed 18 April 2024, https://www.azom.com/article.aspx?ArticleID=22090.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this article?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.