Science of Microscopy

Science of Microscopy

The examination of structure at the microscopic scale, between micrometers and angstrom units, has changed dramatically in recent decades. Many new types of microscopy have emerged, notably the many scanning-probe designs, some of which also allow manipulation of atoms to form wanted structures, while others now permit direct observation of moving proteins in liquids. The traditional electron microscope is being revolutionized by the arrival of aberration correctors and monochromators, which bring the resolution below the Angstrom and electron-volt level. The "laboratory in a microscope" concept is rapidly evolving, as nanostructures are observed forming under controlled conditions at atomic resolution (the carbon nanotube being the most famous recent example). Electron holography and scanning transmission electron microscopy have become indispensable tools of the semiconductor industry. The oldest form of microscopy, optical microscopy, has been rejuvenated by the development of fluorescent, confocal, and two-photon variants. Analytical Scanning X-ray microscopes and Photoemission microscopes at synchrotons now routinely provide spatially resolved electronic structure maps. Tomographic imaging has vastly increased the information content of practically all forms of microscopy, as reflected in the award of a recent Nobel Prize. Molecular biology is benefiting enormously from progress in this technique. Most of these developments are responses to the urgent needs of researchers to characterize new useful nanostructures at the atomic level.

In Science of Microscopy, comprehensive reviews set these innovations in the context of microscopy today. Each contribution presents a form of microscopy or occasionally a microscopic technique, and provides information about the instruments involved and their areas of application. The contributions are written in such a way that the reader can understand how the various instruments function, their strengths and weaknesses, and whether they are suitable for a particular scientific investigation. Science of Microscopy will be an indispensable guide to both a wide range of scientists in university laboratories and to engineers and scientists in industrial R&D departments.

Click here for further information.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this content?

Leave your feedback
Your comment type

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.