Prof Michael J. Demkowicz

Assistant Professor of Materials Science and Engineering

Department of Materials Science and Engineering, Massachusetts Institute of Technology

Room 4-142, 77 Mass. Ave.,
Cambridge
MA
02139
United States
PH: 1 (617) 3246563
Email: [email protected]

Background

Michael Demkowicz studies the fundamental processes by which solids change their atomic structure when driven far from equilibrium, e.g. when plastically deformed, bombardment by energetic ions, shocked, or exposed to environmental extremes like rapidly varying temperatures and pressures. Understanding how materials respond to these external stimuli can be used to create strategies for designing materials with desired properties from the atomic scale up.

Prof. Demkowicz’s recent work has focused on nanocomposites under intense irradiation. Traditional structural materials degrade and fail under these conditions, but certain nanocomposites contain high volume fractions of “super sink” interfaces that allow them to self-heal. By understanding how radiation damage is trapped and removed at such interfaces, Prof. Demkowicz aims to enable the design of a new class of radiation-tolerant materials that would make future nuclear reactors maximally safe, sustainable, and efficient.

Another avenue of research pursued by Prof. Demkowicz is in understanding the mechanical and transport properties of glasses. This class of materials differs fundamentally from crystalline solids in that it possesses no long-range lattice periodicity. The behavior of glasses therefore not only poses a challenge to our current understanding of materials, but also offers opportunities for creating new materials that circumvent the drawbacks of traditional ones at the atomic level.

Areas of current interest for Prof. Demkowicz also include shock physics, nanoscale cellular materials (open and closed cell nanofoams), response of interfaces to severe plastic deformation, and the behavior of materials in extreme environments.

Major Publications

  • "Interface Structure and Radiation Damage Resistance in Cu-Nb Multilayer Nanocomposites," M. J. Demkowicz, R. G. Hoagland, J. P. Hirth, Phys. Rev. Lett. 100 (2008) 136102.
  • "Interfaces between dissimilar crystalline solids," M. J. Demkowicz, J. Wang, R. G. Hoagland, in Dislocations in Solids, Vol. 14 (J. P. Hirth, ed.), Elsevier, Amsterdam, 2008, p. 141.
  • "The Radiation Damage Tolerance of Ultra-High Strength Nanolayered Composites," A. Misra, M. J. Demkowicz, X. Zhang, R. G. Hoagland, JOM 59 (2007) 62.
  • "Simulation of plasticity in nanocrystalline silicon," M. J. Demkowicz, A. S. Argon, D. Farkas, M. Frary, Phil. Mag.87 (2007) 4253.
  • "Autocatalytic avalanches of unit inelastic shearing events are the mechanism of plastic deformation in amorphous silicon," M. J. Demkowicz, A. S. Argon, Phys. Rev. B 72 (2005) 245206.
  • "Liquidlike atomic environments act as plasticity carriers in amorphous silicon," M. J. Demkowicz, A. S. Argon,Phys. Rev. B 72 (2005) 245205.
  • "High-density liquidlike component facilitates plastic flow in a model amorphous silicon system," M. J. Demkowicz, A. S. Argon, Phys. Rev. Lett. 93 (2004) 025505.

Ask A Question

Do you have a question you'd like to ask this Expert?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.