A team of physicists and materials scientists at Lehigh University have developed a new technique to create single crystals, where a broader range of materials can be employed in high-technology applications such as solar energy devices, microelectronics, etc.
A solid’s surface usually melts into a thin liquid layer prior to the melting point. This phenomenon of surface melting occurs in all categories of solids: for example, two ice cubes can fuse at a temperature less than 0°C as the premelted surface water is surrounded inside the bulk at the point of contact and is frozen. Premelting promotes crystal growth, and is vital in geology, metallurgy, and meteorology, such as frost heave, snowflake growth, glacier movement, and skating. As there is a lack of microscopic measurements, the causes of several premelting scenarios and the impact of dimensionality on the premelting phenomenon are poorly understood.
In order to study the effects of microgravity in a better way, Japanese researchers have grown protein crystals and successfully determined the rate of the crystals’ growth onboard the International Space Station (ISS) using laser interferometry.
Scientists from the University of Amsterdam (UvA) and the Hong Kong University of Science and Technology (HKUST) have achieved single-particle resolution, for the first time, in the investigation of surface premelting phenomena.
Researchers at Princeton University have observed a bizarre behavior in a strange new crystal that could hold the key for future electronic technologies. Unlike most materials in which electrons travel on the surface, in these new materials the electrons sink into the depths of the crystal through special conductive channels.
X-ray crystallographic analysis is one of the only methods that provides direct information on molecular structures at the atomic level. The method, however, has the intrinsic limitation that the target molecules must be crystalline, and high-quality single crystals must be prepared before measurement.
In 1894, Pierre Curie speculated on the “the symmetry in physical phenomena, symmetry of an electric field and a magnetic field.” Since then material scientists have working to discover a unique material that displays the coexistence of ferroelectricity and magnetism in a single compound, referred to as a multiferroic compound.
Lithium-ion batteries are a rapidly growing energy storage method due to their high energy density, especially in mobile applications such as personal electronics and electric cars.
Forming the high-quality crystals required for X-ray analysis of the structure of biological molecules is often the most difficult part of taking atomic-resolution images. Using the world's brightest X-ray source, at the Department of Energy's SLAC National Accelerator Laboratory, researchers have demonstrated that sharp images are obtainable, even with imperfect crystals.
The phenomenon of X-ray diffraction by crystals was discovered more than a century ago, and since then it has been a preferred technique for structure determination. It has established its presence in structural research in the fields of biology, and material science. However, many materials whose structures are unknown, do not easily crystallize as three-dimensional structures.
Terms
While we only use edited and approved content for Azthena
answers, it may on occasions provide incorrect responses.
Please confirm any data provided with the related suppliers or
authors. We do not provide medical advice, if you search for
medical information you must always consult a medical
professional before acting on any information provided.
Your questions, but not your email details will be shared with
OpenAI and retained for 30 days in accordance with their
privacy principles.
Please do not ask questions that use sensitive or confidential
information.
Read the full Terms & Conditions.