“In every case these awards represent the outcome of Argonne scientists working closely with industry to apply basic science to meet real needs of the market for benefits to users,” said Stephen D. Ban, director of Argonne's Office of Technology Transfer, which drives Argonne's efforts to link companies to appropriate Argonne-developed technologies. “The spectrum of exciting emerging products represented – from membranes for hydrogen production to low-cost housing in developing countries to advanced hybrid vehicle design – is indicative of the contributions scientists at Argonne and other national laboratories are making to improve the quality of life across the planet. Support of basic and applied science by the Department of Energy makes this spectrum possible and will greatly enhance the economy when these applications enter the marketplace.”
The membrane was patented in 2003, and development of the technology is underway with industrial partners Eltron Research, Inc., and ITN Energy Systems, Inc. The technology is expected advance the “hydrogen economy” by enabling the economical and environmentally friendly production of hydrogen from carbon-based feedstocks, permitting the highly efficient generation of electricity via fuel cells.
Grancrete spray-on structural phosphate ceramic cement was developed by Argonne scientist Arun Wagh in collaboration with Jim Paul of Casa Grande International of Mechanicsville, Va. The Grancrete magnesium-phosphate cement powder would be mixed at a construction site with water and sand into a slurry that would be sprayed onto polystyrene foam sheets in frames and set as structural cement.
Within two to four hours, Grancrete system forms a rigid, long-lasting structural wall or ceiling that is permanently bonded to the panels. The resulting structures make it possible to offer long-lasting, easily maintained housing to a large segment of the world's population that could not previously obtain adequate shelter. A Grancrete structure of approximately 800 square feet, for example, would cost $6000 in labor and materials to construct.
The Glass Furnace Model was developed by Argonne scientist Brian Golchert and colleagues Steve Lottes, Michael Petrick, Chenn Qian Zhou and the late Shen Lin Chang as a three-dimensional computer code, developed for the glass industry to evaluate furnace design, performance and operation.
The code is used to generate a computer simulation that allows engineers to “visualize” critical heat transfer, flow and reaction patterns within the interior of a glass furnace. The simulation is used to conduct extensive experiments, inexpensively on the computer, by varying key operating and design parameters to determine their impact of overall furnace performance and lead to higher efficiency and increased productivity.
For more information on glass manufacturing, click here.