Posted in | News | Photonics

NIST F1, The world's Best Clock Now More Accurate

The world's best clock, NIST-F1, has been improved over the past few years and now measures time and frequency more than twice as accurately as it did in 1999 when first used as a national standard, physicists at the National Institute of Standards and Technology (NIST) report.

The improved version of NIST-F1 would neither gain nor lose one second in 60 million years, according to a paper published online Sept. 13 by the journal Metrologia. NIST-F1 uses a fountain-like movement of cesium atoms to determine the length of the second. The clock measures the natural oscillations of the atoms to produce more than 9 billion "ticks" per second. These results then contribute to the international group of atomic clocks that define the official world time. NIST-F1 has been formally evaluated 15 times since 1999; in its record performance, it measured the second with an uncertainty of 0.53 × 10-15

The improved accuracy is due largely to three factors, according to Tom Parker, leader of the NIST atomic standards research group. First, better lasers, software and other components have made the entire NIST-F1 system much more reliable and able to operate for longer periods of time. Second, the atoms in the cesium vapor are now spread out over a much larger volume of space, reducing the frequency shifts caused by interactions among the atoms. (The formerly round cloud of atoms is now shaped like a short cigar.) Third, scientists are now better able to control magnetic fields within the clock and quantify the corrections needed to compensate for their effects on the atoms.

Improved time and frequency standards have many applications. For instance, ultraprecise clocks can be used to improve synchronization in precision navigation and positioning systems, telecommunications networks, and wireless and deep-space communications. Better frequency standards can be used to improve probes of magnetic and gravitational fields for security and medical applications, and to measure whether "fundamental constants" used in scientific research might be varying over time--a question that has enormous implications for understanding the origins and ultimate fate of the universe.

http://www.nist.gov/

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    NIST Standard Reference Materials. (2019, March 02). NIST F1, The world's Best Clock Now More Accurate. AZoM. Retrieved on April 19, 2024 from https://www.azom.com/news.aspx?newsID=4005.

  • MLA

    NIST Standard Reference Materials. "NIST F1, The world's Best Clock Now More Accurate". AZoM. 19 April 2024. <https://www.azom.com/news.aspx?newsID=4005>.

  • Chicago

    NIST Standard Reference Materials. "NIST F1, The world's Best Clock Now More Accurate". AZoM. https://www.azom.com/news.aspx?newsID=4005. (accessed April 19, 2024).

  • Harvard

    NIST Standard Reference Materials. 2019. NIST F1, The world's Best Clock Now More Accurate. AZoM, viewed 19 April 2024, https://www.azom.com/news.aspx?newsID=4005.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.