3D Carbon-Coated Stable Silicon/Graphene/CNT Composite for Use in Li-Ion Batteries

In a recent study published in the journal Electrochimica Acta, researchers from China developed a 3D carbon-coated stable silicon/graphene/CNT composite to overcome the limitation of volume expansion of silicon lithium-ion batteries during the charge-discharge process to a certain extent.

Study: Poly-dopamine carbon-coated stable silicon/graphene/CNT composite as anode for lithium-ion batteries. Image Credit: Immersion Imagery/Shutterstock.com

Role of Enhanced Anode in Lithium-Ion Batteries

With the environmental degradation and global energy crisis, increasing the use of clean, renewable energy is critical. Developing high-efficiency energy storage power plants and energy storage batteries is crucial for resolving the energy problem. 

The lithium-ion battery, with benefits such as extended cycle life, high energy density, and environment-friendliness, is extensively used in a wide range of applications. The anode material's performance is critical to enhancing the energy density of lithium-ion batteries manufactured using silicon as the primary material. 

Issues such as severe pulverization and subsequent loss of contact with the current collector result in low cycle stability and rapid capacity decay in silicon during the discharge or charge of lithium-ion batteries.

The researchers of this study developed a 3D carbon-coated silicon/graphene/CNT composite ([email protected]/GN/CNT/PDA-C) using electrostatic self-assembly, dopamine self-polymerization, and high-temperature carbonization in an attempt to resolve issues in the lithium-ion anode to a certain degree.


Four composites - cetrimonium bromide or [email protected] ([email protected]), [email protected]/CN/CNT, [email protected]/GN/CNT/PDA-C, and [email protected]/PDA-C, Si/PDA-C - were synthesized in the study.

To develop [email protected] ([email protected]), SiNPs were dispersed in deionized water and constantly mixed, then CTAB aqueous solution was added to the SiNP suspension while rapidly stirring and sonicating the solution for one hour, followed by five centrifugal washing cycles to remove the excess CTAB.

To produce the [email protected]/GN/CNT/PDA-C composite, [email protected], graphene, and carbon nanotubes (CNT) were disseminated in tris buffer to produce a suspension, followed by continuous stirring during which dopamine (DA) was added. Following that, the homogeneous ploy-dopamine carbon layer (PDA-C)-coated [email protected]/CN/CNT was filtered, washed with deionized water, and vacuum dried. Using a similar method, [email protected]/PDA-C, Si/PDA-C, and Si/GN/CNT/PDA-C were prepared to compare the results.


X-ray diffraction patterns demonstrated that the silicon structure was not disrupted by the CTAB alteration, PDA coating, or heat treatment. Due to graphene sheets with highly conductive and graphitized carbon, graphite and crystal planes were also identified at 26.4o and 42.2o in [email protected]/GN/CNT/PDA-C.

Raman measurements were performed to ascertain the structure of the composites. The comparatively low intensity of the D and G bands in the Raman spectra of [email protected]/PAD-C suggests that the [email protected]/PAD-C has a low percentage of disordered carbon components.

Further Reading: Multiphase Gradient Lithiation on Carbon Paper Electrodes in High-Energy Batteries

The silicon content in these composites was confirmed by thermogravimetric analysis (TGA). The TGA curves of Si/PDA-C and [email protected]/PDA-C show a substantial decrease when heated from 500 oC to 620 oC, owing to the oxidation of the coated carbon layers. The TGA findings demonstrate that the [email protected]/PDA-C composite contains somewhat fewer SiNPs than the Si/PDA-C composite due to the low quantity of carbon produced by CTAB following heat treatment.

X-ray photoelectron spectroscopy (XPS) analysis of surficial chemical configurations of the [email protected]/GN/CNT/PAD-C revealed that the PDA-C layer was effectively coated on the composite. Scanning electron microscope images demonstrated that PDA-C is coated over SiNPs to prepare Si/PDA-C composite in Si/PDA-C, [email protected]/PDA-C, Si/GN/CNT/PDA-C, and [email protected]/GN/CNT/PDA-C.

Zeta potential measurements on SiNPs and [email protected] were used to investigate the influence of electrostatic surface alteration on the surface charge characteristics of nano-silicon. Results show that the surface of SiNPs was easily oxidized to form an oxide layer resulting from high surface energy.

The initial five cyclic voltammetry (CV) curves of [email protected]/GN/CNT/PDA-C showed that the formation of solid electrolyte interphase (SEI) correlates to a broad reduction peak in the first cycle, which then dissipates in the second cycle. The injection of Li+ to generate amorphous phrases of LixSi alloy causes a cathodic peak at approximately 0.2 V in future cycles.

The long cycling performance of the [email protected]/GN/CNT/PDA-C electrode at different current densities of 0.1 A g-1 and 1 A g-1 demonstrates that the electrode still delivers a stable reversible capacity of 1306 mAh g-1 with a high capacity retention of 68.1% after 100 cycles, even at a higher current density of 1 A g-1.


The researchers prepared 3D [email protected]/GN/CNT/PDA-C composite using high-temperature pyrolysis processing and self-assembly. Compared to the other two composites ([email protected]/PDA-C and Si/GN/CNT/PDA-C), the [email protected]/GN/CNT/PDA-C composite showed better performance. The prepared composite can be ideal for producing better-performing lithium-ion batteries.


Fangfang Wang, Song Lin, Xuesong Lu, Ruoyu Hong, Huiyong Liu, Poly-dopamine carbon-coated stable silicon/graphene/CNT composite as anode for lithium-ion batteries, Electrochimica Acta (2021), https://www.sciencedirect.com/science/article/pii/S0013468621019927?via%3Dihub

Disclaimer: The views expressed here are those of the author expressed in their private capacity and do not necessarily represent the views of AZoM.com Limited T/A AZoNetwork the owner and operator of this website. This disclaimer forms part of the Terms and conditions of use of this website.

Chinmay Saraf

Written by

Chinmay Saraf

Chinmay Saraf is a science writer based in Indore, India. His academic background is in mechanical engineering, and he has extensive experience in fused deposition-based additive manufacturing. His research focuses on post-processing methods for fused deposition modeling to improve mechanical and electrical properties of 3D printed parts. He has also worked on composite 3D printing, bioprinting, and food printing technologies. Chinmay holds an M.Tech. in computer-aided design and computer-aided manufacturing and is passionate about 3D printing, new product development, material science, and sustainability. He also has a keen interest in "Frugal Designs" to improve the existing engineering systems.


Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Saraf, Chinmay. (2021, December 13). 3D Carbon-Coated Stable Silicon/Graphene/CNT Composite for Use in Li-Ion Batteries. AZoM. Retrieved on January 20, 2022 from https://www.azom.com/news.aspx?newsID=57661.

  • MLA

    Saraf, Chinmay. "3D Carbon-Coated Stable Silicon/Graphene/CNT Composite for Use in Li-Ion Batteries". AZoM. 20 January 2022. <https://www.azom.com/news.aspx?newsID=57661>.

  • Chicago

    Saraf, Chinmay. "3D Carbon-Coated Stable Silicon/Graphene/CNT Composite for Use in Li-Ion Batteries". AZoM. https://www.azom.com/news.aspx?newsID=57661. (accessed January 20, 2022).

  • Harvard

    Saraf, Chinmay. 2021. 3D Carbon-Coated Stable Silicon/Graphene/CNT Composite for Use in Li-Ion Batteries. AZoM, viewed 20 January 2022, https://www.azom.com/news.aspx?newsID=57661.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback