The arrangement of electrons in matter, known as the electronic structure, plays a crucial role in fundamental but also applied research such as drug design and energy storage. However, the lack of a simulation technique that offers both high fidelity and scalability across different time and length scales has long been a roadblock for the progress of these technologies.
When your laptop or smartphone heats up, it's due to energy that's lost in translation. The same goes for power lines that transmit electricity between cities. In fact, around 10 percent of the generated energy is lost in the transmission of electricity. That's because the electrons that carry electric charge do so as free agents, bumping and grazing against other electrons as they move collectively through power cords and transmission lines. All this jostling generates friction, and, ultimately, heat.
Several industries make use of the technology called fluidized beds that plays a significant role in the shifting to green energy and also the production of food and drugs.
In recent years, scientists have been studying special materials called topological materials, with special attention paid to the shape, i.e., topology, of their electronic structures (electronic bands). Although it is not visible in real space, their unusual shape in topological materials produces various unique properties that can be suitable for making next-generation devices.
Shear band formation is not typically a good sign in a material — the bands often appear before a material fractures or fails. But materials science and engineering researchers at the University of Wisconsin–Madison have found that shear bands aren’t always a negative; under the right conditions, they can improve the ductility, or the plasticity, of a material.
In landfills, plastic food packaging takes up a considerable proportion of plastic waste. In the face of increasing environmental issues, scientists are looking to bio-derived alternatives.
A novel multi-material printer has been developed with the use of multi-wavelength high-power lasers, for rapid and seamless 3D printing of smart, flexible devices by researchers from Nanyang Technological University, Singapore (NTU Singapore), Panasonic Factory Solutions Asia Pacific Pte. Ltd. (Panasonic), and Singapore Centre for 3D Printing (SC3DP).
Creating energy the way the sun and stars do — through nuclear fusion — is one of the grand challenges facing science and technology.
A team of international scientists has used NASA's James Webb Space Telescope to detect a new carbon compound in space for the first time. Known as methyl cation (pronounced cat-eye-on) (CH3+), the molecule is important because it aids the formation of more complex carbon-based molecules. Methyl cation was detected in a young star system, with a protoplanetary disk, known as d203-506, which is located about 1,350 light-years away in the Orion Nebula.
When it comes to the environmental impacts of cars, much ink has been spilled on tailpipe emissions. But there's another environmental threat from cars you might not think about: microplastic pollution.
Terms
While we only use edited and approved content for Azthena
answers, it may on occasions provide incorrect responses.
Please confirm any data provided with the related suppliers or
authors. We do not provide medical advice, if you search for
medical information you must always consult a medical
professional before acting on any information provided.
Your questions, but not your email details will be shared with
OpenAI and retained for 30 days in accordance with their
privacy principles.
Please do not ask questions that use sensitive or confidential
information.
Read the full Terms & Conditions.