Nanomaterials Bring 3-Dimensional Displays A Step Closer to Reality

3DIcon Corporation, a development-stage technology company, today announced that its primary research team at the University of Oklahoma (OU) has reached two critical milestones in the development of its CSpace™ (static volume display) technology. CSpace™ uses a clear, non-moving, volumetric projection medium into which light-emitting up-conversion nano-materials have been suspended. The ultimate goal of the CSpace™ research is to create a three-dimensional image by projecting precisely coordinated laser beams into the medium containing nano-materials, exciting the nano-materials to display the three primary colors of red, green, and blue and to create a full-color volumetric image.

The materials development team, led by Dr. Gerard Newman, co-principal investigator of the 3DIcon Sponsored Research Agreement (SRA) and head of the materials research team for CSpace™, has achieved two critical technical milestones: (1) synthesized unique nano-sized crystals that exhibit up-conversion green fluorescence, and (2) successfully dispersed these nano-crystals within a clear host material. This dual achievement results in the creation of a transparent 3D projection medium capable of fluorescence. The engineering of the physical 3D projection medium is a critical part of the CSpace™ volumetric display technology. Photographs of the material sample are available on the company’s new website at

Artist rendering of how 3-D imaging could be used.

“The creation of nano-crystals of the required size and dispersible characteristics is a very difficult feat, and the subsequent physical dispersion of the nano-material in the host material is even more challenging,” said Dr. Newman. “These processes involve painstaking characterization and optimization of reaction conditions in the laboratory to yield high-quality up-conversion and matrix materials. Such breakthroughs can take several years to come about.”

“We believe this is a unique, first-of-its-kind development,” added Dr. James Sluss, principal investigator for the 3DIcon SRA and director of the School of Electrical and Computer Engineering at OU. “This early breakthrough is very significant for the overall development of the CSpace™ Volumetric Imaging System.”

“The creation of nano-sized crystals of the required characteristics is in itself a major achievement,” stated 3DIcon president and COO, Vivek Bhaman. “The OU team has accomplished this along with the ability to disperse these nano-crystals into the projection medium. The combination is a huge step forward scientifically. Specific to our company’s goals, it moves the CSpace™ technology research one large step forward,”

3DIcon’s team at OU has successfully synthesized green light-emitting nano-crystals and embedded them into the projection medium. Continuing research and development efforts focus on optimizing the concentration and uniformity of these nano-materials in the matrix to increase the brightness of visible light emission. Building upon the success of these results, the next steps include development and incorporation of blue and red light-emitting nano-materials into the matrix to provide a medium that, when appropriately mixed and activated, emit a full-color 3D image.

3DIcon believes that its CSpace™ technology will ultimately be best suited for applications in imaging for medical and security purposes, entertainment and gaming, and geo-spatial applications for the military, air traffic control, weather mapping, and oil and gas exploration.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type