Posted in | News

‘Raman-spectrokinetics’ for improved solid catalysts

Renishaw inVia™ microscope user, Prof. Carlos A. Carrero, heads a group that is developing advanced catalysts for the conversion of hydrocarbons into more valuable products at the Department of Chemical Engineering, Auburn University, USA.

Prof. Carlos A. Carrero with his Renishaw inVia™ Qontor® confocal Raman microscope

The Carrero group undertakes fundamental studies to improve and develop more efficient and sustainable catalytic processes. They aim to develop the best catalysts using in situ / operando Raman spectroscopy to gather molecular, structural, and mechanistic insights.

Catalysis is a critical component of the chemical industry

Prof. Carerro said, “The group is trying to measure and understand the redox properties of supported metal oxide catalysts by combining in situ Raman spectroscopy with transient kinetic studies. We call this approach ‘Raman-spectrokinetics’, which allows us to obtain reaction rates directly from the Raman spectra under real conditions and at real time (operando conditions)”.

It would be a huge advancement in catalysis research if it were possible to rationally design optimal catalytic systems. Understanding the correlation between catalyst structure and reactivity is key to realising this ambition.

Prof. Carerro continues, “Due to the well-known activity of vanadium oxide for selective oxidation catalysis, and due to the intense Raman signal assigned to the V=O vibration, we prepared well defined V/Nb/SiO2 catalysts and studied the influence of niobia (promoter) in the redox properties of vanadium oxide (main active site).”

For this work, Prof. Carrero uses Renishaw’s inVia™ Qontor® confocal Raman microscope because it gives high quality Raman data, when the samples are at temperatures around 600°C, with a high thermal background.

Describing his choice of the Renishaw inVia system, Prof. Carrero said, “The new inVia™ Qontor®

LiveTrack™ feature, which maintains sample focus during the Redox cycles, is a remarkable timesaving advantage that, at the same time, provides reliability in the analysis. Also, it is quick and easy to change lasers to run specific experiments (e.g. quick calibration and alignment). As an academic, I find the inVia microscope very friendly to operate which has allowed me to easily train and engage both graduate and undergraduate students in the use of Raman spectroscopy for catalysis. In two years of intense work, the inVia system has demonstrated that it is very robust. Technical service has been very efficient in quickly solving any issues should they arise.”

The group obtained unique insights on the catalytic activity of supported binary (M2Oy)n/(M1Ox)bulk and ternary (M3Oz)m-(M2Oy)n/(M1Ox)bulk metal oxide catalysts. They discovered that the catalyst’s effectiveness strongly depends on: the presence of two- and three-dimensional M2Oy and M3Oz species; the M3:M2 ratio (coverage of each component); and their spatial relationships.

They used Raman-spectrokinetics to measure site-specific (V=O) reaction rates directly from the Raman spectra. They validated this by comparison with the overall (catalyst) reaction rates measured by mass spectrometry.

Please visit www.renishaw.com/catalysis for more information on how Renishaw’s inVia Raman microscope is being used in the study of catalysts and catalytic reactions.

Prof. Carrero’s most recent paper is ‘Developing a Raman-spectrokinetic approach to gain insights on the structure-reactivity relationship of supported metal oxide catalysts’ Jorge Moncada, William Reid Adams, Raj Thakur, Michael Julin, and Carlos A. Carrero. ACS Catal. 8 (2018) 8976.

A video with more information about the work of the Carrero group can be viewed at https://youtu.be/0OlqBXQmytU or visit www.ccarrerogroup.com

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Renishaw plc - Spectroscopy. (2018, December 10). ‘Raman-spectrokinetics’ for improved solid catalysts. AZoM. Retrieved on February 28, 2024 from https://www.azom.com/news.aspx?newsID=50062.

  • MLA

    Renishaw plc - Spectroscopy. "‘Raman-spectrokinetics’ for improved solid catalysts". AZoM. 28 February 2024. <https://www.azom.com/news.aspx?newsID=50062>.

  • Chicago

    Renishaw plc - Spectroscopy. "‘Raman-spectrokinetics’ for improved solid catalysts". AZoM. https://www.azom.com/news.aspx?newsID=50062. (accessed February 28, 2024).

  • Harvard

    Renishaw plc - Spectroscopy. 2018. ‘Raman-spectrokinetics’ for improved solid catalysts. AZoM, viewed 28 February 2024, https://www.azom.com/news.aspx?newsID=50062.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit
Azthena logo

AZoM.com powered by Azthena AI

Your AI Assistant finding answers from trusted AZoM content

Azthena logo with the word Azthena

Your AI Powered Scientific Assistant

Hi, I'm Azthena, you can trust me to find commercial scientific answers from AZoNetwork.com.

A few things you need to know before we start. Please read and accept to continue.

  • Use of “Azthena” is subject to the terms and conditions of use as set out by OpenAI.
  • Content provided on any AZoNetwork sites are subject to the site Terms & Conditions and Privacy Policy.
  • Large Language Models can make mistakes. Consider checking important information.

Great. Ask your question.

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.