High-Temperature Protonic Conductors

The research group GMBM (Biomimetic and multifunctional materials) of the University of Seville is working on the creation of fuel batteries with protonic conductor membranes. The National Aeronautics and Space Administration (NASA) is funding this line of research.

The director of GMBM, Julián Martínez Fernández, has been collaborating with the NASA-Glenn Research Center (in Cleveland, Ohio) for thirteen years. The University of Seville’s project, funded with 200,000 €Euros, consists of developing materials that can produce non pollutant energy.

This source of clean energy is in high-temperature protonic conductors. Fuel batteries are the nucleus of the energy future based on hydrogen, more cleanness and efficiency, and an essential part of these batteries are protonic conductor membranes.

In an interview for Andalucía Investiga, Julián Martínez said that ‘as working temperature increases the efficiency of batteries, the idea is that such membranes are made of materials that are very resistant to high temperatures’. The GMBM is working ‘on the synthesis of these membranes, in their characterisation’, and by means of several agreements, ‘the application membranes are tested in the real world’.

The specific utility of their use in remote production systems, solar stations and eolic plants, lies in their performance in the reverse order. This way, the fuel cells can separate the surplus molecule in the two elements that make it up, that is, water is divided into hydrogen and oxygen, and the energy of the former is accumulated.

Hynergreen, a research division of the Abengoa group, is taking part in the implementation of the new system. It is intended that it replaces the traditionally used materials – plastic polymers-, the only problem being that they are less resistant to high temperatures.

On the contrary, the multifunctional ceramics developed by the University of Seville overcome this limitation. During an interview for Andalucía Investiga, the director of GMBM confirmed that its conductive capacity stays ‘over 1,400 degrees centigrades’.

http://www.us.es

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.