Posted in | News | Materials Science | Chemistry

Newly Developed Durable Metal-Phosphide Catalyst for Deoxygenation of Sulfoxides

Catalysts play crucial roles in chemical processes. However, many conventional catalysts have suffered from deactivation caused by sulfur-containing molecules which are strongly absorbed onto catalyst surfaces and suppress catalytic reactions. Osaka University researchers have developed a highly active and durable metal-phosphide catalyst for the deoxygenation of sulfoxides. The developed catalyst has a high durability against sulfur-poisoning in contrast with the conventional metal catalysts. Their findings are published in JACS Au.

Transformation of sulfur-containing molecules is a fundamental and significant reaction in organic and pharmaceutical chemistry. However, the sulfur atom strongly coordinates with the active sites of metal catalysts, significantly decreasing the catalytic performance. Sulfur impurities contained in chemical feedstocks also cause catalyst deactivation. Therefore, the development of a new sulfur-tolerant and highly active catalyst is desired.

The researchers prepared precious metal phosphide nanoparticle catalysts for the deoxygenation of sulfoxides into sulfides. The integration of phosphorus into the metal framework-;a method called "phosphorus-alloying"-; greatly improved the catalytic performance of precious metal nanoparticles. In particular, the ruthenium phosphide nanoparticles (Ru−P/SiO2) exhibited excellent catalytic activity and durability against sulfur-poisoning.

"Integration of phosphorus into ruthenium nanoparticles drastically enhanced catalytic activity and durability (Fig. 1a)," study first author Hiroya Ishikawa explains.

Ru−P/SiO2 achieved the highest turnover number (12,500) reported to date (Fig. 1b). This catalyst shows wide substrate applicability and can deoxygenate structurally complex drug intermediates to produce bioactive sulfides such as sulindac sulfide (anti-inflammatory drug), ufiprazole (anti-ulcer drug), and fenbendazole (anthelmintic) in high yields (Fig. 1c). Moreover, Ru−P/SiO2 can promote sulfoxide deoxygenation even in the presence of a lot of sulfur-containing molecules; even in the presence of 200 equiv. of sulfide per ruthenium, Ru−P/SiO2 quantitatively promoted the deoxygenation of sulfoxide, while the conventional ruthenium nanoparticle catalyst (Ru/SiO2) was completely deactivated (Fig. 2).

"We expect that our metal phosphide catalyst will make a significant contribution to a lot of chemical processes, which suffered from catalyst deactivation caused by sulfur," says study corresponding author Takato Mitsudome. "But beyond this, we believe phosphorus-alloying can be a powerful method for designing highly active and durable metal nanoparticle catalysts for a variety of organic syntheses." 

The article, "Phosphorus-Alloying as a Powerful Method for Designing Highly Active and Durable Metal Nanoparticle Catalysts for the Deoxygenation of Sulfoxides: Ligand and Ensemble Effects of Phosphorus" was published in JACS Au at DOI: https://pubs.acs.org/doi/10.1021/jacsau.1c00461 (open access)

Source: https://www.osaka-u.ac.jp/en

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.