Posted in | News | Semiconductor | Chemistry

Contactless Photovoltage Measurement Uncovers Secrets of Sunlight-Driven Water Splitting

The Science

Scientists are advancing the use of semiconductors to convert sunlight into renewable energy. In solar cells, semiconductors convert sunlight into electricity. When brought into direct contact with water, semiconductors can instead use sunlight to convert water into hydrogen, a carbon-free fuel. The energy output from the semiconductor is given by its photovoltage. Now researchers have developed a new technique to measure this photovoltage quantitatively. Measuring the photovoltage is essential to finding the best conditions to make fuel from sunlight and water.

The Impact

Researchers can easily measure the electric energy output of solar cells using wires that connect the cell and a measuring device. However, this energy output is difficult to measure in solar fuel electrodes that are in contact with water. This is because pure water is not electrically conductive, preventing researchers from observing the photovoltage. Here, researchers show that the photovoltage of such solar fuel electrodes can be measured in a contactless way. They did so by using a so-called gold Kelvin probe that hovers over the illuminated device and picks up the information through space.

Summary

In this research, scientists from the University of California, Davis and Martin Luther University in Germany conducted contactless photovoltage measurements on bismuth vanadate, a semiconductor for water oxidation, and on copper gallium selenide, a semiconductor for hydrogen generation from water. They covered the semiconductors with water solutions and a glass microscopy slide and placed the slide underneath the Kelvin probe.

The researchers found that the photovoltage depends not only on the semiconductor, but also on the color of the light (the photon energy), the light intensity, and the chemical properties of the water solution. This information allows scientists to identify the best conditions for the direct conversion of solar energy into hydrogen and other fuels.

Funding

The measurements were supported by the Department of Energy Office of Science, Office of Basic Energy Sciences.

Source: https://www.energy.gov/

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.