Posted in | News | Energy | Graphene

GMG's Graphene Aluminium-Ion Battery Update: Minimal Temperature Rise Identified While Fast Charging

Graphene Manufacturing Group Ltd. ("GMG" or the "Company") provides the latest progress update on its Graphene Aluminium-Ion Battery technology ("G+AI Battery") being developed by GMG and the University of Queensland ("UQ").

Figure 1: Thermal Image of Lithium-Ion Battery (left) with Thermal Image of Graphene Aluminium-Ion Battery (right). Image Credit: Graphene Manufacturing Group Ltd.

The Company is pleased to announce that it has identified minimal temperature rise when charging and discharging GMG's Graphene Aluminium-Ion Battery. This is observed when charging and discharging multiple times at high C- rates (C rate measures the current in a which a battery can be charged or discharged, eg. 1 C rate the battery should be able to be fully discharged in 1 hour). As shown in Figure 1, the temperature of a high-quality lithium-ion battery, produced by a world leading brand, can exceed 60 degrees Celsius when being discharged at the maximum current allowed (4.8 C-rate - an estimated 0.8 A/g on the cathode active material mass). By comparison, GMG's Graphene Aluminium-Ion Battery temperature is 29 degrees Celsius when it is discharged at even higher current density (20 C-rate - approximately 2.0 A/g on the cathode active mass). The temperatures of both batteries were taken with the room temperature at 23.5 degrees Celsius (+/- 0.5 degrees Celsius).

Battery Type

Discharging Current
(Amps / gram cathode active mass)

Operating Temperature
Degrees Celsius

World Leading High Quality Lithium-Ion Battery

0.8

61.6

GMG's Graphene Aluminium-Ion Battery

2.0

30.9

 

The Company intends to validate with further testing the possibility that its battery may not need thermal management, even at high charge and discharge rates. This creates the potential for significant cost reduction at the system level and highly reduced system cost.

  • GMG's Graphene Aluminium-Ion Battery may not need a thermal management system when used in an electric vehicle battery pack or an energy storage system, which will lead to a simpler, more cost effective and higher energy density battery pack. Most Lithium-Ion Battery Packs require a thermal management system, such as the one shown in Figure 2 below.
  • The elimination of thermal management can potentially reduce the weight of an electric vehicle battery pack by up to 16%. For example, the thermal management system of a Lithium-Ion Battery Pack can weigh up to 80 kg out of a total of 480 kg. Such a weight reduction achieved through the elimination of thermal management translates into more energy volumetrically (approximately 10%), as well as vehicle mass reduction for more range. Additional range improvements could be expected to come from no thermal management parasitic drain on the battery during operation.
  • Furthermore, because GMG's Graphene Aluminium-Ion Battery has no combustible volatile organic materials, it is more resilient to the risk of chemical fires, such as those that have occurred with Lithium-Ion Batteries.

Battery Technology Readiness Level

The battery technology readiness level ("BTRL") of the Graphene Aluminium-Ion technology remains at Level 4 (see Figure 4). GMG is currently optimizing electrochemical behaviour for pouch cells via ongoing laboratory experimentation. When GMG commissions its Pilot Plant, it is anticipated that the Company's battery technology will progress to BTRL 7 and 8 since the equipment and process to make the Graphene Aluminium-Ion batteries are the same as those used to make Lithium Ion Batteries.

Next Steps Toward Commercialisation & Market Applications

The Company continues to see a broad range of applications for a completed GMG Graphene Aluminium Ion Battery - utilising its ultra-high power-density and nominal energy density characteristics. Along with Rio Tinto, a range of global companies have confidentially expressed their interest in working with GMG in the following vertical sectors:

Next Generation Battery Performance

GMG's next generation Graphene Aluminium Ion Battery performance data (as tested and calculated on coin cells), as compared to the most commonly available lithium-ion batteries, is shown below in Figure 5, with a list of its beneficial characteristics.

Performance results for the pouch cells could be significantly different and will be communicated upon successfully producing a repeatable and fully 3rd party tested 1000 mAh+ battery pouch cell.

Source: https://graphenemg.com/

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.