A new water filtration system has been developed by ETH researchers. In comparison to existing systems ,it is highly efficient in isolating toxic radioactive substances and heavy metal ions present in water. Gold recovery is another potential application of the new filter.
A research group at France's National Institute of Applied Sciences of Lyon (INSA de Lyon) have discovered a technique to improve the mechanical energy harvesting performance potential of smart materials called, "electrostrictive polymers."
A magnetic state in a few atomic laters of artificially synthesized materials, known as transitional metal oxides, has been developed by researchers from the University of Arkansas and their colleagues.
There are many different ways to make nanomaterials but weaving, the oldest and most enduring method of making fabrics, has not been one of them – until now. An international collaboration led by scientists at the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley, has woven the first three-dimensional covalent organic frameworks (COFs) from helical organic threads.
The W.M. Keck Foundation has awarded a $1 million grant to Lehigh to study and discover the mechanisms that govern anti-thermal processes that appear to reverse nature.
Although compressed natural gas represents a cleaner and more efficient fuel for vehicles, its volatile nature requires a reinforced, heavy tank that stores the gas at high pressure and therefore limits vehicle design. Researchers at the University of Pittsburgh’s Swanson School of Engineering are utilizing metal-organic frameworks (MOFs) to develop a new type of storage system that would adsorb the gas like a sponge and allow for more energy-efficient storage and use.
RamanFest is an international event. This annual conference illustrates the current state of advanced applied Raman spectroscopy through presentations and discussions from today's leaders in this field from both acad...
Researchers at the Massachusetts Institute of Technology (MIT) have produced a thin-film material whose electrical and phase characteristics can be altered between two crystal states - one semiconducting and one metallic - by applying an electrical charge.
Researchers from the U.S. Naval Research Laboratory, MIPT, and Kansas State University have established a new method to absorb electromagnetic radiation, using a specific absorbing system like an anisotropic crystal. The study holds immense potential for electrodynamics and could offer a new way to absorb the electromagnetic wave energy. The results of the study have been reported in Physical Review B.
Scientists from the University of Strathclyde have discovered that the charged particle motion can be controlled by the diffraction of ultra-intense laser light, traveling via a thin foil. The findings in the fundamental physics of the laser-plasma interactions, may have a major impact in the fields of security, industry, and medicine. This breakthrough holds immense potential in advancing compact, cost-effective, laser-powered particle accelerators.
Terms
While we only use edited and approved content for Azthena
answers, it may on occasions provide incorrect responses.
Please confirm any data provided with the related suppliers or
authors. We do not provide medical advice, if you search for
medical information you must always consult a medical
professional before acting on any information provided.
Your questions, but not your email details will be shared with
OpenAI and retained for 30 days in accordance with their
privacy principles.
Please do not ask questions that use sensitive or confidential
information.
Read the full Terms & Conditions.