In certain materials, electrical and mechanical effects are closely linked: for example, the material may change its shape when an electrical field is applied or, conversely, an electrical field may be created when the material is deformed. Such electromechanically active materials are very important for many technical applications.
Silicon anodes are known to considerably increase the capacity of Li-ion batteries, but their performance degrades quickly with use. Although polymeric coatings could be a solution to this problem, only a handful of studies have analyzed the mechanisms at play.
Plastics are among the most successful materials of modern times. However, they also create a huge waste problem. Scientists from the University of Groningen (The Netherlands) and the East China University of Science and Technology (ECUST) in Shanghai produced different polymers from lipoic acid, a natural molecule.
In this modern age, plastics are one of the most successful materials. But they also contribute to a huge problem of waste.
Toxic solvents like benzene and alcohols are often used by chemical manufacturers to make products such as plastics and pharmaceuticals.
A Kenyan materials engineer sets a stunning example in the fight against plastic waste? by using it to build tough, durable and lasting bricks.
Researchers developing renewable plastics and exploring new processes for plastics upcycling and recycling technologies will now be able to easily baseline their efforts to current manufacturing practices to understand if their efforts will save energy and reduce greenhouse gas emissions.
At the Tokyo Institute of Technology (Tokyo Tech), researchers have created a new polymer whose properties vary significantly upon exposure to mechanical stress.
Imagine a rubber band that was capable of snapping itself many times over, or a small robot that could jump up a set of stairs propelled by nothing more than its own energy. Researchers at the University of Massachusetts Amherst have discovered how to make materials that snap and reset themselves, only relying upon energy flow from their environment.
Plastic is ubiquitous in people's lives. Yet, when plastic-containing items have fulfilled their missions, only a small amount is recycled into new products, which are often of lower quality compared to the original material. And, transforming this waste into high-value chemicals requires substantial energy.
Terms
While we only use edited and approved content for Azthena
answers, it may on occasions provide incorrect responses.
Please confirm any data provided with the related suppliers or
authors. We do not provide medical advice, if you search for
medical information you must always consult a medical
professional before acting on any information provided.
Your questions, but not your email details will be shared with
OpenAI and retained for 30 days in accordance with their
privacy principles.
Please do not ask questions that use sensitive or confidential
information.
Read the full Terms & Conditions.