Upgraded Software Allows Auto Manufacturers to Install Flexible Components

Can the newly designed dashboard be easily installed? What paths should the assembly robot take so that the cables do not hit against the car body? A new software program simulates assembly paths and also factors in the pliability of components.

Car component designers not only have to ensure that their designs are visually appealing, they also have to think about the assembly process: Can the designed dashboard be easily installed in the new car model? What assembly paths need to be taken so that the component does not hit and scratch the car body? Thanks to a new software program, components that only exist in the form of CAD data can be virtually installed in the new car model by the assembly planners. If a component is too large to be maneuvered into place, the program gives concrete advice on where to change its shape.

The software was developed and has now been further improved by researchers at the Fraunhofer-Chalmers Research Centre for Industrial Mathematics FCC in Gothenburg, Sweden, and the Fraunhofer Institute for Industrial Mathematics ITWM in Kaiserslautern. “We can also include the pliability of components in the assembly simulation,” says ITWM group manager Dr.-Ing. Joachim Linn. “In the CAD data, flexible components such as plastic parts for the passenger compartment appear rigid, but during assembly they have to be slightly bent and pressed.” How much force needs to be applied to bend the dashboard far enough to install it in the car? Can the job be done by just one employee and are special tools required? How can flexible brake hoses be installed most efficiently? The researchers also simulate the use of assembly robots, whose flexible supply lines often scrape against the car body, leaving small scratches. The program computes how the robot should move and fit the parts so that the cables do not hit the bodywork.

These computations are fast – like the CAD programs the designers are used to. “You can work interactively with the program, for example to make a component longer or shorter in just a few seconds. For this purpose we slimmed down the highly accurate structure-mechanical computation processes. The results are still accurate enough but are delivered in real time,” says Linn. Assembly paths, too, are computed within minutes. The researchers will give a live demonstration of the program at the Hannover-Messe (Hall 17, Stand D60) from April 20 to 24. The software is due to be launched on the market before the end of the year; support services and training material are already available.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.