GE Global Research Develops “Ideal” Carbon Nanotube Diode

GE Global Research, the centralized research organization of the General Electric Company, announced the development of an ideal carbon nanotube diode that operates at the “theoretical limit,” or best possible performance. This is a significant improvement upon the original nanotube diode device that GE developed and announced last year. This latest breakthrough will enable even smaller and faster electronic devices with increased functionality.

In the course of its research, the GE team led by Dr. Ji Ung Lee made a related discovery when it observed a photovoltaic effect in the nanotube diode device. This is a very significant development that could lead to new approaches and breakthroughs in photovoltaic research. Photovoltaics research is a key component of GE’s Ecomagination initiative, which was launched in May. Ecomagination represents the company’s commitment to aggressively drive and bring to market new technologies that help its customers address their most pressing energy and environmental challenges.

GE reported its discovery in the cover story of the August 15, 2005 edition of Applied Physics Letters.

“GE’s success in developing the ’perfect’ carbon nanotube device has not only ushered in a new era in electronics, it has potentially opened new doors in solar energy research,” said Margaret Blohm, GE’s advanced technology leader for nanotechnology. “The discovery of a photovoltaic effect in our nanotube device could lead to exciting breakthroughs in solar cells that make them more efficient and a more viable alternative in the mainstream energy market.

Blohm added, “Photovoltaics research is already a major component of GE’s Ecomagination initiative, and this latest discovery will only further the company’s quest to find alternative sources of clean, sustainable energy to benefit our customers and society at large.”

Under Ecomagination, GE has pledged to more than double its level of investment in the development of new, environmental-friendly technologies from $700 million to $1.5 billion over the next five years. As part of this commitment, GE Global Research has an active program in photovoltaics that is investigating how to generate power from sunlight more cost effectively and more efficiently. The recent discovery of a photovoltaic effect in the carbon nanotube diode device will only help further the ongoing research efforts.

Diodes are fundamental semiconductor devices that form the basic building blocks of electronic devices, such as transistors, computer chips, sensors, and light emitting diodes (LEDs). Unlike traditional diodes, GE’s carbon nanotube device has the ability to perform multiple functions - as a diode and two different types of transistors - which should enable it to both emit and detect light.

In addition to opening new doors in photovoltaics research, GE’s carbon nanotube diode device could have many applications in computing, communications, power electronics and sensors.

The carbon nanotube diode was developed by a team led by Dr. Ji Ung Lee, a Micro- and Nano-Structures Technologies scientist who works in the Nanotechnology Advanced Technology Program at the GE Global Research Center in Niskayuna, N.Y.

http://www.crd.ge.com

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.