Posted in | News | Materials Science

A Simple Method to Fabricate Reproducible Planar Microstructures of Polysiloxane

Polysiloxane is an elastic polymer which is widely used in fluidics, optics, and biomedical engineering. It offers desirable properties for microfabrication due to its castable and curable properties.

To produce small scale structures consisting of polysiloxane, soft lithography is used as a standard technique in academic research laboratories.

Recent advances in digital fabrication, in particular 3D printing, have enabled direct patterning of polysiloxane albeit with strict requirements for the properties of the printing inks. Suitable inks are usually highly viscous and fast-curing. For 3D printing, the yield stress or photocurable characteristics of the polysiloxane resins are required to allow them to retain the printed shape.

The low viscosity of the additive-curing polysiloxane makes them incompatible for printing with direct ink writing (DIW) 3D printers. While the low viscosity of the polysiloxane resin such as Sylgard 184 facilitates easy extrusion through the nozzles, the reflow of the patterned resin can compromise the print fidelity.

Researchers from Singapore University of Technology and Design's (SUTD) Soft Fluidics Lab developed a simple method to fabricate reproducible planar microstructures consisting of polysiloxane using commercially available liquid polysiloxane resins without changing their properties.

In this newly developed approach, curable liquid polysiloxane with the viscosity in the range of 1-100 Pa.s was dispensed in a liquid immiscible with the resins such as methanol, ethanol, and isopropanol. The contact angle of the dispensed polysiloxane on the substrate increased from 20o in the air to 100o in alcohols. The increase in the contact angles allowed maintaining the structures of patterned polysiloxane until curing, after which the embedding liquid was readily removed by evaporation. The method was termed as embedded ink writing (EIW) (refer to image).

"With EIW, polysiloxane inks can be patterned on different soft and rigid substrates without compromising the adhesion of the printed polysiloxane with the substrate," explained lead author Dr. Rahul Karyappa from SUTD.

"The presence of embedding media did not hamper the bonding of the polysiloxane filaments in both lateral and vertical arrangements, allowing this technology to be effective especially in fabricating flexible devices and microfluidic devices using commercially available PDMS resin," added principal investigator, Assistant Professor Michinao Hashimoto from SUTD.

The research work was published in ACS Applied Materials and Interfaces, a leading journal that encourages newly-discovered materials and interfacial processes. Terry Ching, a PhD scholar at SUTD, also participated in this research project.

Source: https://www.sutd.edu.sg/

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.