Hydrogen Storage Materials to be Developed by Newly Formed Research Network

The Marie Curie Research Training Network COSY (Complex Solid State Reactions for Energy Efficient Hydrogen Storage) was launched on November, 1st, 2006. The network, which receives €2.5 million in funding from the European Union, was established to develop new types of reactive light-metal hydride composites that can be used for more effective hydrogen storage. During the project’s four-year duration, GKSS-Forschungszentrum Geesthacht will coordinate the collaboration between the 13 participating research institutes from seven European countries.

It’s all a question of storage

Hydrogen can easily be produced by using renewable sources of energy, which will have to replace fossil fuels once the latter are depleted at some point in the future. However, the use of hydrogen as an environmentally friendly source of energy for mobile devices such as automobiles, laptops and cameras is still hindered by a number of factors, including the excessive size and weight of existing hydrogen storage systems. If it becomes possible to store hydrogen more effectively than is currently the case, the gas would serve as an ideal energy carrier for mobile applications. Over the next four years, the scientists involved in the COSY network will be working to achieve this goal by developing new nano-structured composites of various light-metal hydrides for use as storage materials. “Light-metal hydrides are solid materials that chemically bind hydrogen atoms and release them again when heated,” explains Professor Rüdiger Bormann, Director of the Institute for Materials Research at GKSS-Forschungszentrum Geesthacht and coordinator of COSY. “The ‘reactive hydride composites’ discovered by the scientists at GKSS-Forschungszentrum Geesthacht will allow us to significantly increase the storage density. By storing hydrogen in solids, we can avoid a number of material- and safety-related technological difficulties, such as those encountered during high-pressure storage of gaseous hydrogen or the storage of liquid hydrogen at low temperatures.”

The COSY network aims to prepare and optimise the new reactive hydride composites for use in hydrogen storage systems of mobile applications. To make this possible, the COSY scientists investigate how the light-metal hydrides and hydride composites can be produced economically, characterise the micro- and nano-structures generated during production, evaluate and optimise the thermodynamics and kinetics of the hydrogen absorption and release, and model these processes.

Training of young scientists and international cooperation In addition to research, the Marie Curie network COSY also focuses on training and further education as well as on the exchange of young scientists throughout Europe. Generally, doctoral candidates at COSY work in at least two of the network’s institutes. In addition to an individualised non-scientific training program, the postgraduates’ curriculum includes research assignments of several weeks’ duration at partner institutes within the network, as well as a series of training workshops on various hydrogen technology topics.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.