Stretchable Electronics Can Enable Integration of Medical Devices into Human Body

A research team from the Northwestern University’s McCormick School of Engineering has created a design that enables development of highly stretchable electronics for medical applications. The design allows a device to stretch and bend over 200% of its original size, which is four times higher than the current technology. This is achieved by a combination of liquid metal and porous polymer.

Scientists have recently developed a design that allows electronics to bend and stretch to more than 200 percent their original size

Yonggang Huang, Joseph Cummings Professor of Civil and Environmental Engineering and Mechanical Engineering, noted that by using the existing technology, electronics are stretched to only a small amount. However, several potential applications need a device that bends and stretches like a rubber band. This level of stretchability can enable integration of medical monitoring devices into the human body, added Huang.

Huang conducted the research along with the scientists from the University of Illinois at Urbana-Champaign, Dalian University of Technology in China; and the Korea Advanced Institute of Science and Technology in South Korea for the past five years. They have developed electronic devices with approximately 50% stretchability, which is not sufficient for several applications. A conductivity loss in stretchable electronics is one of the challenges faced by the team. Electronic circuits produced from solid metals can resist a small amount of stretch, whereas their electrical conductivity decreases by 100 times when they are stretched.

To overcome these challenges, the researchers first developed a highly porous 3-D structure using a polymer called poly(dimethylsiloxane) (PDMS). The material has an ability to stretch to three times its original size. Later, the team placed a liquid metal, EGaIn, within the pores, thus allowing a consistent flow of electricity even when the polymer material is extremely stretched. The process resulted in an extremely stretchable and highly conductive material.

Source: http://www.northwestern.edu/

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Chai, Cameron. (2019, February 09). Stretchable Electronics Can Enable Integration of Medical Devices into Human Body. AZoM. Retrieved on April 26, 2024 from https://www.azom.com/news.aspx?newsID=33461.

  • MLA

    Chai, Cameron. "Stretchable Electronics Can Enable Integration of Medical Devices into Human Body". AZoM. 26 April 2024. <https://www.azom.com/news.aspx?newsID=33461>.

  • Chicago

    Chai, Cameron. "Stretchable Electronics Can Enable Integration of Medical Devices into Human Body". AZoM. https://www.azom.com/news.aspx?newsID=33461. (accessed April 26, 2024).

  • Harvard

    Chai, Cameron. 2019. Stretchable Electronics Can Enable Integration of Medical Devices into Human Body. AZoM, viewed 26 April 2024, https://www.azom.com/news.aspx?newsID=33461.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.